Belle II Particle Identification

Jake Bennett
The University of Mississippi
Quarknet workshop - July 2020

Mt. Tsukuba (877m)

SuperKEKB and Belle II: 2nd generation "B Factory"

$$
c \bar{c}, u \bar{u}, d \bar{d}, \ell^{+} \ell^{-} \leftarrow e^{+} e^{-} \rightarrow \Upsilon(\mathrm{nS}) \rightarrow B^{(*)} \bar{B}^{(*)}
$$

SuperKEKB and Belle II: 2nd generation "B Factory"

$$
c \bar{c}, u \bar{u}, d \bar{d}, \ell^{+} \ell^{-} \leftarrow e^{+} e^{-} \rightarrow \Upsilon(\mathrm{nS}) \rightarrow B^{(*)} \bar{B}^{(*)}
$$

SVD
What are some features you notice in this event?

The Belle II detector

First new particle collider since the LHC (intensity rather than energy frontier; $\mathrm{e}^{+} \mathrm{e}^{-}$rather than pp)

The Belle II detector

Central Drift Chamber:
He(50\%): $\mathrm{C}_{2} \mathrm{H}_{6}(50 \%)$, Small cells, long lever arm, fast electronics

Readout (TRG, DAQ):
Max. 30kHz L1 trigger
$\sim 100 \%$ efficient for hadronic events $1 \mathrm{MB}(\mathrm{PXD})+100 \mathrm{kB}$ (others) per event - over 30GB/sec to record

Offline computing

Distributed over the world via the GRID

Central Drift Chamber

- CDC layers alternate between "field layers" and "sense layers"
- Sense wires held at a large potential (anode)
- Grounded field wires help to shape the electric field

Central Drift Chamber

$$
F_{B}=q \vec{v} \times \underset{\text { B into the page }}{\vec{B}}
$$

- CDC layers alternate between "field layers" and "sense layers"
- Sense wires held at a large potential (anode)
- Grounded field wires help to shape the electric field

Central Drift Chamber

$$
F_{B}=q \vec{v} \times \vec{B}
$$

B into the page

- CDC layers alternate between "field layers" and "sense layers"
- Sense wires held at a large potential (anode)
- Grounded field wires help to shape the electric field

Central Drift Chamber

$$
F_{B}=q \vec{v} \times \vec{B}
$$

- CDC layers alternate between "field layers" and "sense layers"
- Sense wires held at a large potential (anode)
- Grounded field wires help to shape the electric field
- Electrons liberated by ionization drift toward the sense wires

Central Drift Chamber

$$
F_{B}=q \vec{v} \times \vec{B}
$$

- CDC layers alternate between "field layers" and "sense layers"
- Sense wires held at a large potential (anode)
- Grounded field wires help to shape the electric field
- Electrons liberated by ionization drift toward the sense wires

Central Drift Chamber

- CDC layers alternate between "field layers" and "sense layers"
- Sense wires held at a large potential (anode)
- Grounded field wires help to shape the electric field
- Electrons liberated by ionization drift toward the sense wires
- Near the wires, the large electric field causes the electrons to gain enough energy per mean free path to ionize at the next collision

Central Drift Chamber

- CDC layers alternate between "field layers" and "sense layers"
- Sense wires held at a large potential (anode)
- Grounded field wires help to shape the electric field
- Electrons liberated by ionization drift toward the sense wires
- Near the wires, the large electric field causes the electrons to gain enough energy per mean free path to ionize at the next collision
- Detectable signal created by avalanche of electrons near sense wires
- Location of the hit and drift time are used to determine the trajectory of the track

Central Drift Chamber

- CDC layers alternate between "field layers" and "sense layers"
- Sense wires held at a large potential (anode)
- Grounded field wires help to shape the electric field
- Electrons liberated by ionization drift toward the sense wires

Check-in: What important feature are we missing in this picture?
A. Air pressure
B. Electric fields
C. Magnetic fields
D. Ionization
E. The Force

Drift cells

$$
F_{B}=q \vec{v} \times \vec{B}
$$

- Presence of magnetic field causes electron trajectories to curve
- Changes the shape of isochrones (lines of equal drift time)
- Lorentz Angle: angle between drift path with and without B-field
- Also depends on the gas composition
- Note: B-field can have a big effect on drift time!

60-40 Helium- Propane

Example from CLEO

Very simplistic overview of tracking

- Localize a charged track to be on a $\sim 135 \mu \mathrm{~m}$ resolution drift circle around wire

Very simplistic overview of tracking

- Localize a charged track to be on a $\sim 135 \mu \mathrm{~m}$ resolution drift circle around wire

Very simplistic overview of tracking

- Localize a charged track to be on a $\sim 135 \mu \mathrm{~m}$ resolution drift circle around wire

Particle IDentification (PID)

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\frac{1}{\sqrt{1-\beta^{2}}} \quad \beta \gamma=\frac{p}{m}
$$

- Particle identification is basically measuring mass (measure both p and β simultaneously)
- $\pi^{ \pm}: 140 \mathrm{MeV}$
- K $\mathrm{K}^{ \pm}: 494 \mathrm{MeV}$
- $\mathrm{p}^{ \pm}: 938 \mathrm{MeV}$
- $\mu^{ \pm}: 106 \mathrm{MeV}$
- All depends on the interaction
- Specific energy loss: $\mathrm{dE} / \mathrm{dx}$
- Time of flight (ToF)
- Cherenkov techniques

Particle IDentification (PID)

- Particle identification is basically measuring mass (measure both p and β simultaneously)
- $\pi^{ \pm}: 140 \mathrm{MeV}$
- K ${ }^{ \pm}: 494 \mathrm{MeV}$
- $\mathrm{p}^{ \pm}: 938 \mathrm{MeV}$
- $\mu^{ \pm}: 106 \mathrm{MeV}$
- All depends on the interaction
- Specific energy loss: $\mathrm{dE} / \mathrm{dx}$
- Time of flight (ToF)
- Cherenkov techniques

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\frac{1}{\sqrt{1-\beta^{2}}} \quad \beta \gamma=\frac{p}{m}
$$

Basic philosophy

- $d E / d x$ depends only on $\beta \gamma=p / m$ (Bethe-Bloch formula)

Predict: What will happen if we look at momentum rather than p / m ?

Basic philosophy

- $d E / d x$ depends only on $\beta \gamma=p / m$ (Bethe-Bloch formula)
- Measuring $\mathrm{dE} / \mathrm{dx}$ and the momentum allows us to predict the mass (identity) of the particle

Basic philosophy

- $d E / d x$ depends only on $\beta \gamma=p / m$ (Bethe-Bloch formula)
- Measuring $\mathrm{dE} / \mathrm{dx}$ and the momentum allows us to predict the mass (identity) of the particle

The Belle II detector

Cerenkov techniques

- Charged particle moving through a dielectric medium

Cerenkov techniques

- Charged particle moving through a dielectric medium with velocity > the propagation speed

Cerenkov techniques

- Charged particle moving through a dielectric medium with velocity > the propagation speed of light in the medium will radiate photons (light)
- Photons are emitted at a fixed angle: $\quad \cos (\theta)=\frac{1}{n(\omega) \beta}$

- Emission spectrum is $\sim 1 / E$: mostly in optical range

Čerenkov light in the ARICH (endcap Particle ID)

Čerenkov light in the TOP (barrel Particle ID)

Belle II @ Ole Miss

Jake Bennett

Lucien Cremaldi

Robert Kroeger

Saroj Pokharel

Justin Guilliams

Anil Panta

Michael Jeandron

Michel Villanueva

David Sanders

