Belle II Particle Identification

Jake Bennett The University of Mississippi Quarknet workshop - July 2020

Mt. Tsukuba (877m)

6- 6 St

KEK Tsukuba Campus

SuperKEKB and Belle II: 2nd generation "B Factory"

$c\bar{c}, u\bar{u}, d\bar{d}, \ell^+\ell^- \leftarrow e^+e^- \rightarrow \Upsilon(\mathsf{nS}) \rightarrow B^{(*)}\bar{B}^{(*)}$

З

SuperKEKB and Belle II: 2nd generation "B Factory"

New positron damping ring

7 GeV e-

 $c\bar{c}, u\bar{u}, d\bar{d}, \ell^+\ell^- \leftarrow e^+e^- \rightarrow \Upsilon(\mathsf{nS}) \rightarrow B^{(*)}\bar{B}^{(*)}$

Check-in: How are the electrons and positrons "steered" around the rings?

Animat

A. Air pressure
B. Electric fields
C. Magnetic fields
D. Both electric and magnetic fields
E. The Force

A canonical **BB** Event

The second secon

H

A canonical **BB** Event

What are some features you notice in this event?

First new particle collider since the LHC (intensity rather than energy frontier; e⁺e⁻ rather than pp)

K_L and muon detector:

Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

Particle Identification:

Time-of-Propagation counter (barrel) Prox. Focusing Aerogel RICH (fwd)

positron (4 GeV)

Readout (TRG, DAQ):

Max. 30kHz L1 trigger ~100% efficient for hadronic events. 1MB (PXD) + 100kB (others) per event - over 30GB/sec to record

Offline computing:

Distributed over the world via the GRID

arXiv:1011.0352 [physics.ins-det]

First new particle collider since the LHC (intensity rather than energy frontier; e⁺e⁻ rather than pp)

K_L and m Resistive Scintillato

Central Drift Chamber

positron (4 GeV)

Readout (TRG, DAQ):

Max. 30kHz L1 trigger ~100% efficient for hadronic events. 1MB (PXD) + 100kB (others) per event - over 30GB/sec to record

Offline computing:

Distributed over the world via the GRID

arXiv:1011.0352 [physics.ins-det]

- CDC layers alternate between "field layers" and "sense layers" •
 - Sense wires held at a large potential (anode)
 - Grounded field wires help to shape the electric field -

- CDC layers alternate between "field layers" and "sense layers" \bullet
 - Sense wires held at a large potential (anode) —
 - Grounded field wires help to shape the electric field -

 $F_B = q \overrightarrow{v} \times B'$

B into the page

- CDC layers alternate between "field layers" and "sense layers" \bullet
 - Sense wires held at a large potential (anode) —
 - Grounded field wires help to shape the electric field -

 $F_B = q \overrightarrow{v} \times B$

B into the page

- CDC layers alternate between "field layers" and "sense layers"
 - Sense wires held at a large potential (anode)
 - Grounded field wires help to shape the electric field
- Electrons liberated by ionization drift toward the sense wires

 $F_B = q \overrightarrow{v} \times \overrightarrow{B}$

- CDC layers alternate between "field layers" and "sense layers"
 - Sense wires held at a large potential (anode)
 - Grounded field wires help to shape the electric field
- Electrons liberated by ionization drift toward the sense wires

 $F_B = q \overrightarrow{v} \times \overrightarrow{B}$

- CDC layers alternate between "field layers" and "sense layers"
 - Sense wires held at a large potential (anode)
 - Grounded field wires help to shape the electric field
- Electrons liberated by ionization drift toward the sense wires
- Near the wires, the large electric field causes the electrons to gain enough energy per mean free path to ionize at the next collision

- CDC layers alternate between "field layers" and "sense layers"
 - Sense wires held at a large potential (anode)
 - Grounded field wires help to shape the electric field
- Electrons liberated by ionization drift toward the sense wires
- Near the wires, the large electric field causes the electrons to gain enough energy per mean free path to ionize at the next collision
- Detectable signal created by avalanche of electrons near sense wires
- Location of the hit and drift time are used to determine the trajectory of the track

- CDC layers alternate between "field layers" and "sense layers" \bullet
 - Sense wires held at a large potential (anode)
 - Grounded field wires help to shape the electric field
- Electrons liberated by ionization drift toward the sense wires
- Noar the wires the large electric field causes

Check-in: What important feature are we missing in this picture?

A. Air pressure **B. Electric fields** C. Magnetic fields **D.** Ionization E. The Force

Drift cells

- Presence of magnetic field causes electron trajectories to curve
 - Changes the shape of isochrones (lines of equal drift time)
 - Lorentz Angle: angle between drift path with and without B-field
 - Also depends on the gas composition
 - Note: B-field can have a big effect on drift time!

50-50% Argon-Ethane

Example from CLEO

$F_B = q \overrightarrow{v} \times \overrightarrow{B}$

Very simplistic overview of tracking

Localize a charged track to be on a ~135 µm resolution drift circle around wire ullet

Very simplistic overview of tracking

Localize a charged track to be on a ~135 µm resolution drift circle around wire \bullet

Superlayer boundaries

CDC Hits (size of circle proportional to drift time)

Hits in axial layers lie along the same trajectory

Offset from stereo layers related to z coordinate of particle trajectory

Charge of track determines sign of bend

Low momentum tracks curl up inside the detector

Very simplistic overview of tracking

Localize a charged track to be on a \sim 135 µm resolution drift circle around wire \bullet

Superlayer boundaries

CDC Hits (size of circle proportional to drift time)

Hits in axial layers lie along the same trajectory

Offset from stereo layers related to z coordinate of particle trajectory

Charge of track determines sign of bend

Low momentum tracks curl up inside the detector

How can we use this to measure the momentum of a particle?

Particle IDentification (PID)

- Particle identification is basically measuring mass (measure both p and β simultaneously)
 - π[±] : 140 MeV
 - K±:494 MeV
 - p[±]:938 MeV
 - μ[±] : 106 MeV
- All depends on the interaction
 - Specific energy loss: dE/dx
 - Time of flight (ToF)
 - Cherenkov techniques -

$$\gamma = rac{1}{\sqrt{1-rac{v^2}{c^2}}} = rac{1}{\sqrt{1-eta^2}} \qquad eta\gamma = rac{p}{m}$$

Particle IDentification (PID)

- Particle identification is basically measuring mass (measure both p and β simultaneously)
 - π[±] : 140 MeV
 - K±:494 MeV
 - p±:938 MeV
 - μ^{\pm} : 106 MeV
- All depends on the interaction
 - Specific energy loss: dE/dx
 - Time of flight (ToF)
 - Cherenkov techniques

Basic philosophy

• dE/dx depends only on $\beta \gamma = p/m$ (Bethe-Bloch formula)

Predict: What will happen if we look at momentum rather than p/m?

dE/dx

βγ

Basic philosophy

- dE/dx depends only on $\beta \gamma = p/m$ (Bethe-Bloch formula)
- Measuring dE/dx and the momentum allows us to predict the mass (identity) of the particle

βγ

Basic philosophy

- dE/dx depends only on $\beta \gamma = p/m$ (Bethe-Bloch formula)
- Measuring dE/dx and the momentum allows us to predict the mass (identity) of the particle

We artificially set dE/dx to 1 for electrons. Why?

βγ

K_L and muon detector:

Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

Particle Identification:

Time-of-Propagation counter (barrel) Prox. Focusing Aerogel RICH (fwd)

positron (4 GeV)

Cerenkov techniques

Charged particle moving through a dielectric medium •

Cerenkov techniques

 Charged particle moving through a dielectric medium with velocity > the propagation speed

Cerenkov techniques

- Charged particle moving through a dielectric medium \bullet with velocity > the propagation speed of light in the medium will radiate photons (light)
- Photons are emitted at a fixed angle: ullet
- Emission spectrum is ~1/E: mostly in optical range \bullet

Čerenkov light in the ARICH (endcap Particle ID)

Čerenkov light in the TOP (barrel Particle ID)

Belle II @ Ole Miss

Jake Bennett

Lucien Cremaldi

Saroj Pokharel

Justin Guilliams

Anil Panta

Robert Kroeger

Don Summers

Michel Villanueva

David Sanders

3

Michael Jeandron

