RFOFO in GEANT Status

R. Godang, S. Bracker The University of Mississippi

> March 11, 2004 Oxford, Mississippi

- **GEANT** Simulation
 - Geometry and Material
 - GRID Magnetic Fields
- RF Cavities Tuning
- Beam Profile
- GEANT Output
- Emittance Calculation

GEANT Simulation

Rotated Constant Field By = 0.1250 T

- 12 cells and each cell is 2.75 m long
- RF frequency is 201.25 MHz
- Overall dipole B is 0.125 Tesla
- Alternating Solenoids B is \pm 3.0 Tesla
- **RFOFO's circumference is 33.43 m**

GRID Magnetic Fields

- We determine the closed orbit using constant magnetic fields
- We generate 1cm × 1cm × 1cm
 GRID fields map with tilt angle of
 53 mrad (S. Bracker, MUCOOL-271)
- Satisfy fundamental Maxwell's equations $\implies \nabla \cdot B = 0$ and $\nabla \times B = 0$
- We use FINT interpolation routine with result of 10^{-4} Tesla differences compared to the real fields
- We applied the GRID fields into GEANT with satisfying its geometry

- Time to reach the first RF cavity is 1.7 ns
- Constant *B* fields gives the same result in timing compared to the GRID fields

- W = 40 cm, H = 40 cm, T = 62.56 cm
- Wedges are made of liquid hydrogen with a full angle $A=76.93^\circ$ at vertex
- No windows at the moment

$\mu\text{-}\textsc{Beam}$ in RFOFO Ring

RFOFO Ring

- Injection point: X=Y=0cm; Z=525.2 cm
- $R \equiv$ radial distance of particles from center of the ring

Radial Position vs Y Direction

BEAM PROFILE Cleaning Up The Beam Noise

• 513.2 < R < 537.2 cm

• -30 < Y < 30 cm

Position Angle vs Radial Distance

The $\mu\text{-beam}$ is cleaned

R. Godang, S. Bracker The University of Mississippi

BEAM PROFILE

 P_x vs P_z

 P_y vs P_z

GEANT Output Radial Position

Radial Position Overlay

Y-R Position

• Particle momentum in X-Z for 10, 20, 30 and 40 turns

• Y-R: 10, 20, 30 and 40 turns

R. Godang, S. Bracker The University of Mississippi

Summary and Plan

We injected the μ -beam with no vertex in X in order to start the particles at the same time

We clean up the beam noise prior to ECAL9 calculation

The radial position of the μ -beam looks promising

We need to understand the clock time in **GEANT**

Emittance calculation using ECAL9 is under way