

# First Measurement of the Branching Fraction of $e^+e^- \to B^0\overline{B}{}^0$

#### Romulus Godang\*

Department of Physics and Astronomy, University of Mississippi-Oxford University, Mississippi 38677, United States of America

The BABAR Collaboration

We report the first measurement of the absolute branching fraction  $e^+e^- \to B^0\overline{B}^0$  at the  $\Upsilon(4S)$  resonance using data collected with the BABAR detector at the PEP-II asymmetric-energy  $e^+e^-$  storage ring. The analysis is performed with partial reconstruction of the decay  $\overline{B}^0 \to D^{*+}\ell^-\overline{\nu}_\ell$ , where the presence of a signal decay is determined using only the lepton and the soft pion from the  $D^*$  decay. By reconstructing events with one or two signal decays, we obtain a preliminary result of  $e^+e^- \to B^0\overline{B}^0 = 0.486 \pm 0.010(stat.) \pm 0.009(sys.)$ . Our result does not depend on branching fractions of the  $\overline{B}^0$  and the  $D^{*+}$  decays, on the individual simulated reconstruction efficiencies, on the ratio of the charged and neutral B meson lifetimes, or on the assumption of isospin symmetry.

Keywords:  $f_{00}$ ,  $\Upsilon(4S)$  Resonance, Isospin Violation at  $\Upsilon(4S)$ .

#### 1. Introduction

Isospin violation in decays of  $e^+e^- \to B\overline{B}$  at the  $\Upsilon(4S)$  resonance results in a difference between the branching fractions  $f_{00} \equiv \mathcal{B}(e^+e^- \to B^0\overline{B}^0)$  and  $f_{+-} \equiv \mathcal{B}(e^+e^- \to B^+B^-)$ . The experimental value of  $R^{+/0} \equiv f_{+-}/f_{00}$  measured by BABAR is  $1.006\pm0.036\pm0.031^1$  and  $1.10\pm0.06\pm0.05^2$ , by Belle is  $1.01\pm0.03\pm0.09^3$ , and by CLEO is  $1.058\pm0.084\pm0.136^4$  and  $1.04\pm0.07\pm0.04.5$  Theoretical predictions for  $R^{+/0}$  range from 1.03 to 1.25.6 A precision measurement of  $f_{00}$  or  $f_{+-}$  can be used to re-normalize all B meson branching fractions, eliminating the usual assumption that  $f_{00} = f_{+-} = 50\%$ , and will bring us closer to an understanding of the isospin violation in the  $\Upsilon(4S)$  decays.

This first direct measurement of  $f_{00}$  is based on partial reconstruction of the decay  $\overline B{}^0 \to D^{*+} \ell^- \overline \nu_\ell$ . The sample of events in which at least one  $\overline B{}^0 \to D^{*+} \ell^- \overline \nu_\ell$  candidate decay is found is labeled as "single-tag sample". The number of signal events in such decays is

$$N_s = 2N_{B\overline{B}} f_{00} \epsilon_s \mathcal{B}(\overline{B}^0 \to D^{*+} \ell^- \bar{\nu}_\ell), \tag{1}$$

<sup>\*</sup>E-mail: godang@phy.olemiss.edu.

<sup>&</sup>lt;sup>a</sup>The inclusion of charge-conjugate states is implied throughout this paper.

where  $N_{B\overline{B}} = (88726 \pm 23) \times 10^3$  is the total number of  $B\overline{B}$  events in the data sample and  $\epsilon_s$  is the reconstruction efficiency of the decay  $\overline{B}{}^0 \to D^{*+} \ell^- \overline{\nu}_\ell$ . The technique for measuring  $N_{B\overline{B}}$  is described elsewhere.<sup>8</sup> The number of signal events in which two  $\overline{B}{}^0 \to D^{*+} \ell^- \overline{\nu}_\ell$  candidates are found is labeled as "double-tag sample":

$$N_d = N_{B\overline{B}} f_{00} \epsilon_d \left[ \mathcal{B}(\overline{B}^0 \to D^{*+} \ell^- \bar{\nu}_\ell) \right]^2, \tag{2}$$

where  $\epsilon_d$  is the efficiency to reconstruct two  $\overline{B}{}^0 \to D^{*+} \ell^- \bar{\nu}_{\ell}$  decays in the same event. Using Eq. (1), (2) and defining  $C \equiv \epsilon_d/\epsilon_s^2$ ,  $f_{00}$  is given by

$$f_{00} = \frac{CN_s^2}{4N_d N_{P\bar{D}}}. (3)$$

### 2. Data and Analysis Technique

The BABAR data sample used in this paper consists of  $81.7\,\mathrm{fb}^{-1}$  collected at the  $\Upsilon(4S)$  resonance and  $9.6\,\mathrm{fb}^{-1}$  collected 40 MeV below the resonance. A detailed description of the BABAR detector is provided elsewhere.<sup>9</sup>

The decays  $\overline B{}^0 \to D^{*+} \ell^- \bar \nu_\ell$  are partially reconstructed. This technique has been widely used.<sup>4,10,11</sup> All lepton (soft pion) candidates are required to have momenta between 1.5 GeV/c and 2.5 GeV/c (60 MeV/c and 200 MeV/c) in the  $e^+e^-$  center-of-mass (CM) frame. The neutrino invariant mass squared is calculated by

$$\mathcal{M}^2 \equiv (E_{\text{beam}} - E_{D^*} - E_{\ell})^2 - (\mathbf{p}_{D^*} + \mathbf{p}_{\ell})^2 , \qquad (4)$$

where  $E_{\text{beam}}$  is the beam energy and  $E_{\ell}$  ( $E_{D^*}$ ) and  $\mathbf{p}_{\ell}$  ( $\mathbf{p}_{D^*}$ ) are the CM energy and momentum of the lepton (the  $D^*$  meson).

In what follows, we use the symbol  $\mathcal{M}_s^2$  to denote  $\mathcal{M}^2$  for any candidate in the single-tag sample. In the double-tag sample, we randomly choose one of the two reconstructed  $\overline{B}^0 \to D^{*+}\ell^-\nu_l$  candidates as "first" and the other as "second". Their  $\mathcal{M}^2$  values are labeled  $\mathcal{M}_1^2$  and  $\mathcal{M}_2^2$ , respectively. We define a signal region  $\mathcal{M}^2 > -2~\mathrm{GeV}^2/c^4$  and a sideband  $-8 < \mathcal{M}^2 < -4~\mathrm{GeV}^2/c^4$ . We also require that the first candidate has to fall into the signal region. This selection increases the ratio of signal to background as much as a factor of 2 in statistics compared to that without the selection.<sup>12</sup>

The continuum background events are non-resonant decays of  $e^+e^- \to \gamma^* \to q\bar{q}$  where q=u,d,s,c. The combinatorial  $B\overline{B}$  background is formed from random combinations of reconstructed leptons and soft pions. This background can also be due to the low-momentum soft pions not coming from a  $D^*$ , produced by production correlation between a D meson and an associated pion from either  $B.^{13}$  The peaking  $B\overline{B}$  background is composed of  $\overline{B} \to D^*(n\pi)\ell\bar{\nu}_\ell$  decays with or without an excited charmed resonance  $D^{**}.^{14}$ 

The  $\mathcal{M}_s^2$  and  $\mathcal{M}_2^2$  distributions are shown in Fig.1. A binned  $\chi^2$  fit yields the values  $N_s=786300\pm2000$  and  $N_d=3560\pm80$ . Using the simulation we determine  $C=0.9946\pm0.0078$ , where the error is due to the finite size of the sample.





Fig. 1. The  $\mathcal{M}_s^2$  (left) and  $\mathcal{M}_2^2$  (right) distributions of the on-resonance samples. The continuum background has been subtracted from the  $\mathcal{M}_s^2$  and  $\mathcal{M}_2^2$  distributions. For the  $\mathcal{M}_2^2$  distribution, also the  $\mathcal{M}_1^2$ -combinatorial, and the  $\mathcal{M}_1^2$ -peaking have been subtracted. The levels of the simulated signal, peaking  $B\overline{B}$  and combinatorial  $B\overline{B}$  background contributions are obtained from the fit.

### 3. Systematic Studies

We consider several sources of systematic uncertainties in  $f_{00}$ . All estimated errors are absolute systematic uncertainties in  $f_{00}$  and summarized in Table 1.

| •                                             |                  |
|-----------------------------------------------|------------------|
| Source                                        | $\delta(f_{00})$ |
| $\mathcal{M}_1^2$ -combinatorial              | 0.0005           |
| $\mathcal{M}_1^{ar{2}}$ -peaking              | 0.0005           |
| Monte Carlo statistics                        | 0.002            |
| Same-charged events                           | 0.0025           |
| $\varUpsilon(4S) 	o 	ext{non-} B\overline{B}$ | 0.0025           |
| Peaking background                            | 0.004            |
| Efficiency correlation                        | 0.004            |

0.0055 0.009

Table 1. Summary of the absolute systematic errors for  $f_{00}$ .

- (1) The systematic uncertainty from the  $\mathcal{M}_1^2$ -combinatorial contribution subtraction in the  $\mathcal{M}_2^2$  histogram is 0.0005. The error is obtained by varying the total  $\mathcal{M}_1^2$ -combinatorial background by its statistical error.
- (2) An error of 0.0005 is estimated due to the subtraction of the  $\mathcal{M}_1^2$ -peaking contribution in the  $\mathcal{M}_2^2$  histogram.
- (3) An error of 0.002 is due to the finite size of the simulated sample.

B-meson counting

Total

- (4) The same-charged events lead to an error of 0.0025 on  $f_{00}$ .
- (5) The upper limit for the branching fraction of  $\Upsilon(4S)$  decays into non-BB is 4%

at 95% confidence level. 15 The error due to such decays is 0.0025.

- (6) The systematic uncertainty of the peaking background is 0.004 on  $f_{00}$ .
- (7) The systematic uncertainty due to the efficiency correlation is estimated from the Monte Carlo simulation to be 0.004.
- (8) The error due to the uncertainty in  $N_{B\overline{B}}$  is 0.0055.

We combine the uncertainties given above in quadrature to determine an absolute systematic error of 0.009 in  $f_{00}$ . For more details see Ref. 16.

### 4. Summary

In summary, we have used partial reconstruction of the decay  $\overline{B}{}^0 \to D^{*+} \ell^- \nu_l$  to obtain a preliminary result of

$$f_{00} = 0.486 \pm 0.010(stat.) \pm 0.009(sys.).$$
 (5)

This result does not depend on branching fractions of the  $\overline{B}{}^0$  and the  $D^{*+}$  decays, on the individual simulated reconstruction efficiencies, on the ratio of the charged and neutral B meson lifetimes, or on the assumptions of isospin symmetry.

### Acknowledgments

The author would like to thank all members of the *BABAR* collaboration. This work was supported in part by the U.S. Department of Energy contracts DE-AC03-76SF00515 and DE-FG05-91ER40622.

## References

- 1. BABAR Collaboration, B. Aubert et al., Phys. Rev. D 69, 071101 (2004).
- 2. BABAR Collaboration, B. Aubert et al., Phys. Rev. D 65, 032001 (2002).
- 3. Belle Collaboration, N. C. Hastings et al., Phys. Rev. D 67, 052004 (2003).
- 4. CLEO Collaboration, S. B. Athar et al., Phys. Rev. D 66, 052003 (2002).
- 5. CLEO Collaboration, J. P. Alexander et al., Phys. Rev. Lett. 86, 2737 (2001).
- R. Kaiser, A. V. Manohar, and T. Mehen, Phys. Rev. Lett. 90, 142001 (2003);
  M. B. Voloshin, Mod. Phys. Lett. A 18, 1783 (2003);
  N. Byers and E. Eichten, Phys. Rev. D 42, 3885 (1990);
  G. P. Lepage, Phys. Rev. D 42, 3251 (1990);
  D. Atwood and W. J. Marciano, Phys. Rev. D 41, 1736 (1990).
- 7. Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004).
- 8. BABAR Collaboration, B. Aubert et al., Phys. Rev. D 67, 032002 (2003).
- BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Meth. A 479, 1 (2002);
  P. Oddone, UCLA Collider Workshop, eConf C870126, 423 (1987);
  UA1 Collaboration, C. Albajar, Phys. Lett. B 186, 247 (1987).
- 10. ARGUS Collaboration, H. Albrecht et al., Phys. Lett. B 324, 249 (1994).
- 11. BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 89, 011802 (2002).
- 12. Romulus Godang and Donald Summers, hep-ex/0404035 (2003).
- 13. Fermilab E791, E. M. Aitala et al., Phys. Lett. B 403, 185 (1997).
- 14. Fermilab E691, J. C. Anjos et al., Phys. Rev. Lett. 62, 1717 (1989).
- 15. CLEO Collaboration, B. Barish et al., Phys. Rev. Lett. 76, 1570 (1996).
- 16. BABAR Collaboration, B. Aubert et al., hep-ex/0408022 (2004).