

April 17, 2005 Tampa, FLorida

Romulus Godang University of Mississippi

Motivation

□ Most published papers assume $f_{00} = f_{+-} = 50\%$

- \Box First direct measurement of f_{00}
- \Box Important for B branching fractions
- $\ \square$ Significant information to isospin violation in $\Upsilon(4S)$ decays

Theoretical Predictions

$$\Box \ R^{+/0} \equiv rac{f_{+-}}{f_{00}} = 1.03 - 1.25$$

Authors	$R^{+/0}\equivrac{f_{+-}}{f_{00}}$
Atwood et al. (1990)	~ 1.18
Byers et al. (1990)	1.05 - 1.10
Lepage (1990)	1.03 - 1.14
Kaiser et al. (2003)	1.04 - 1.25
Voloshin (2003)	~ 1.19

Soo-hyeon Nam, M. P. Lett. A (2005)

- \hookrightarrow Isospin violation in B decays
- ← Important for CP Violation physics

Experimental Results

Mode $B \rightarrow$	$\int {\cal L} dt$	$R^{+/0}\equivrac{f_{+-}}{f_{ m oo}}$	Method	Source
$J/\psi K^{(*)(+/0)}$	9.2/fb	$1.04\pm0.07\pm0.04$	F.R.	CLEO '01
$D^{(*)(+/0)}\ellar u$	2.7/fb	$1.058 \pm 0.084 \pm 0.136$	P.R.	CLEO '02
$J/\psi h^{(+/0)}$	20.7/fb	$1.10 \pm 0.06 \pm 0.05$	F.R.	BABAR '02
Dileptons	29.4/fb	$1.01 \pm 0.03 \pm 0.09$	F.R.	BELLE '03
$J/\psi(K^+/K^0_s)$	81.9/fb	$1.006 \pm 0.036 \pm 0.031$	F.R.	BABAR '04

F.R. = Full Reconstruction P.R. = Partial Reconstruction

- \Box These $R^{+/0}$ measurements mostly depend on
 - Their branching fractions
 - The ratio of B^+ and $\overline{B}{}^0$ lifetime
 - The assumption of *B* isospin symmetry
- □ P.R. yields large event samples compared to F.R.
- □ We are using P.R. with double-tag technique which does not rely on above assumptions !

•
$$E_{D^*} \sim rac{E_\pi}{E_\pi^{cms}} m_{D^*}$$

•
$$ec{p}_{D^*}\sim \hat{ec{p}}_{\pi} imes \sqrt{E_{D^*}^2-m_{D^*}^2}$$

Observable Missing Mass Squared

$$\mathcal{M}^2 \equiv (E_{\mbox{beam}} - E_{D^*} - E_\ell)^2 - (ec{\mathbf{p}}_{\mathrm{D}^*}) + ec{\mathbf{p}}_\ell^2$$

Only slow π and hard ℓ (e or μ) are detected

```
\Box~1.5~{
m GeV}/c < p_\ell < 2.5~{
m GeV}/c
```

```
\Box~60~{
m MeV}/c < p_\pi < 200~{
m MeV}/c
```

Partial Reconstruction

Tag Selection

- □ Single tags (N_s) → at least one neutral B partially reconstructed Its missing mass variable $\hookrightarrow \mathcal{M}_s^2$
- $\Box \text{ Double tags } (N_d) \rightarrow \text{ both neutral}$ B partially reconstructedIts missing mass variables
 - 1^{st} candidate $\hookrightarrow \mathcal{M}_1^2$
 - 2^{nd} candidate $\hookrightarrow \mathcal{M}_2^2$
- BABAR Data
- 82 $fb^{-1} \Upsilon(4S)$ -resonance (mean energy of 10.580 GeV)
- 10 fb^{-1} off-resonance

 f_{00} Determination The relation of N_s and N_d to \mathcal{B} $N_s = 2 \ N_{B\overline{B}} \ f_{00} \ \epsilon_s \ \mathcal{B}(\overline{B}^0 \to D^{*+}\ell^- \overline{\nu}_\ell)$ $N_d = N_{B\overline{B}} \ f_{00} \ \epsilon_d \ [\mathcal{B}(\overline{B}^0 \to D^{*+}\ell^- \overline{\nu}_\ell)]^2$ where $\Box \ N_{B\overline{B}} = \text{total number of } B\overline{B}$

- $\Box \ \epsilon_s(\epsilon_d) = \text{reconstruction efficiency}$ of the single (double) tags
- □ Define $C \equiv \epsilon_d / \epsilon_s^2 = 0.995 \pm 0.008$ (measured from MC) and solve f_{00}

$$f_{00}=rac{CN_s^2}{4N_dN_{B\overline{B}}}$$

Backgrounds

Single & Double Tag Backgrounds • Continuum: $e^+e^- \rightarrow \gamma^* \rightarrow q\overline{q}$ (subtracted using off-resonance data) • Combinatoric: random combinations of ℓ and π (obtained from MC simulated events) • Peaking: $B \to D^* \pi \ell \bar{\nu}_{\ell}$, $D^* \pi$ may or may not coming from D^{**} (obtained from MC simulated events) □ Additional backgrounds for double tags • \mathcal{M}_1^2 Combinatoric (~ 3%) 1^{st} candidate is combinatoric & 2^{nd} candidate is signal (subtracted using \mathcal{M}_1^2 sideband data) • \mathcal{M}_1^2 Peaking (~ 1%) 1^{st} candidate is a peaking & 2^{nd} candidate is signal (subtracted using MC simulated events)

Same-charge Samples

Data Fits

Signal Yields

Summary of Fitting Results

Source	\mathcal{M}_{s}^{2}	\mathcal{M}_2^2
Combinatorial $B\overline{B}$ Peaking $B\overline{B}$	$\begin{array}{c} 558080 \pm 470 \\ 68170 \pm 260 \end{array}$	$\begin{array}{c} 1510\pm20\\ 300\pm20 \end{array}$
Continuum \mathcal{M}_1^2 -combinatorial	240600 ± 1400 —	160 ± 40 180 ± 20 60 ± 10
Signal yields	$\frac{-}{786200\pm1900}$	$\frac{3560 \pm 10}{3560 \pm 70}$
Confidence Level	11%	82%

Input parameters :

- $\Box \, \, N_s = (78.62 \pm 0.19) imes 10^4$
- $\Box \,\, N_d = (35.6 \pm 0.7) imes 10^2$

$$\square N_{B\overline{B}} = (88.7 \pm 1) \times 10^6$$

$$\Box \,\, C = 0.995 \pm 0.008$$

Systematic Errors

Summary of the absolute systematic error for f_{00}

Source	$\delta(f_{00})$
Total $B\overline{B}$ events	0.0055
Peaking background	0.0040
$\Upsilon(4S) ightarrow$ non- $B\overline{B}$	0.0025
Same-charge samples	0.0025
MC statistics	0.0020
Efficiency correlation	0.0015
\mathcal{M}_1^2 -combinatorial	0.0005
\mathcal{M}_1^2 -peaking	0.0005
Total	0.008

- □ The dominant systematic error comes from total $B\overline{B}$ events including hadronic selection and tracking efficiency
- □ Systematic error due to lepton and pion momentum spectrums are negligible

□ This result depends very weakly on the simulated reconstruction efficiency

Summary

