Study of the Branching Fraction of  $\mathcal{B}(\Upsilon(4S) \to B^0 \bar{B}^0)$  with Partial Reconstruction of  $\bar{B}^0 \to D^{*+} \ell^- \bar{\nu}_\ell$ 

> Romulus Godang ( University of Mississippi ) on behalf of <u>The BaBar Collaboration</u>

> > P11, APS/DPF April 5-8, 2003 Philadelphia, PA

Philadelphia, PA

# Motivation

- Absolute measurement of  $\mathcal{B}(\Upsilon(4S) \to B^0 \overline{B}{}^0)$   $\equiv f_{00}$  is necessary to enhance our knowledge of all branching fractions of B meson decays at the  $\Upsilon(4S)$
- $\Upsilon(4S) \to B^0 \overline{B}{}^0$  or  $\Upsilon(4S) \to B^+ B^ B^0 \overline{B}{}^0$  production mechanism:



- $B \to D^* l \bar{\nu}_l$  decays have the largest branching fraction in any exclusive *B* decays
- $\frac{f_{+-}}{f_{00}} = 1.04 \pm 0.07 \pm 0.04$  (PRL 86, 2737, 2001, CLEO)  $\frac{f_{+-}}{f_{00}} = 1.10 \pm 0.06 \pm 0.05$  (PRD 65, 32001, 2002, BaBar) an error of 8% (CLEO); 7% (2 $\sigma$ )(Babar)

### Introduction

• BaBar: ~ 82  $fb^{-1}$   $B\bar{B}$  at  $\Upsilon(4S)$ ~ 10  $fb^{-1}$  off-resonance

Single Tag Events

$$\bar{\mathrm{B}}^0 \to \mathrm{D}^{*+} l^- \bar{\nu}_l \Longrightarrow \mathrm{D}^{*+} \to \mathrm{D}^0 \pi^+$$

At least one *B* partially reconstructed

**Double Tag Events** 

Within single tag sample, we also require the other B to be partially reconstructed

Backgrounds: continuum, combinatoric, correlated

• We can measure  $f_{00}$  without knowing  $\epsilon_{0+}$ ,  $\mathcal{B}(\bar{B}^0 \to D^{*+} \ell^- \bar{\nu}_{\ell})$  and  $\mathcal{B}(D^{*+} \to D^0 \pi^+)$ 

$$f_{00} = \frac{N_s^2}{4 \times N_d \times N_{B\bar{B}}}$$

### Partial Reconstruction Technique

- $D^*$  is detected through a soft pion in the decay of  $D^* \to D\pi$
- This technique gains a factor of  $\sim 10$  in statistics compared to full reconstruction
- Observable Missing Mass Squared:

$$\widetilde{\mathcal{M}}_{\nu}^2 \equiv (E_{\text{beam}} - \widetilde{E}_{D^*} - E_{\ell})^2 - (\widetilde{\vec{\mathbf{p}}}_{D^*} + \vec{\mathbf{p}}_{\ell})^2$$

where:

$$E_{D^*} \simeq \frac{E_{\pi}}{E_{\pi}^{CM}} M_{D^*} \equiv \widetilde{E}_{D^*}$$
$$\vec{\mathbf{p}}_{D^*} \simeq \hat{\mathbf{p}}_{\pi} \times \sqrt{\widetilde{E}_{D^*}^2 - M_{D^*}^2} \equiv \widetilde{\vec{\mathbf{p}}}_{D^*}$$

• Momentum Cuts:

1.5 GeV/ $c \le p_l \le 2.3$  GeV/c60 MeV/ $c \le p_\pi \le 200$  MeV/c

### Signal Events, MC

- Signal region:  $\widetilde{\mathcal{M}}_{\nu}^{2} > -2 \; (\mathrm{GeV/c^{2}})^{2}$
- Correlated background:  $B \to D^{**} \ell \bar{\nu}_{\ell}$

( $D^{**}$ : resonant or nonresonant  $D^*\pi$  state)



Philadelphia, PA



Philadelphia, PA

#### **Continuum, Combinatoric Backgrounds**

- Fox-Wolfram moments:  $R_2 \equiv H_2/H_0 < 0.4$ has been used to reduce continuum events  $(e^+e^- \rightarrow \gamma^* \rightarrow q\bar{q}, \text{ where } q = u, d, s, c)$
- Wrong sign events are defined when  $\ell^+$ has the same sign with soft  $\pi^+ \implies (\ell^+ - \pi^+)$
- Wrong sign MC has been used to estimate the combinatoric background in sideband region:  $-8 < \widetilde{\mathcal{M}}_{\nu}^2 < -4 \; (\text{GeV}/\text{c}^2)^2$



# Single Tag Yields

• Correlated background is estimated using MC in signal region:  $\widetilde{\mathcal{M}}_{\nu}^2 > -2 \; (\text{GeV}/\text{c}^2)^2$ 





Philadelphia, PA

### **First Look of Double Tag Events**

• Backgrounds are estimated with the same technique as they are in single tag events



is under study

# Summary

- This will be the first measurement of the absolute  $\mathcal{B}(\Upsilon(4S) \to B^0 \overline{B}{}^0)$  and independent of  $\overline{B}{}^0$  as well as  $D^{*+}$ branching fractions
- Expected:  $\sim 3\%$  in statistical error
- Published result is expected in summer