

First Measurement of $\mathcal{B}(e^+e^- \to B^0\overline{B}^0)$ at $\Upsilon(4S)$ (page 1)

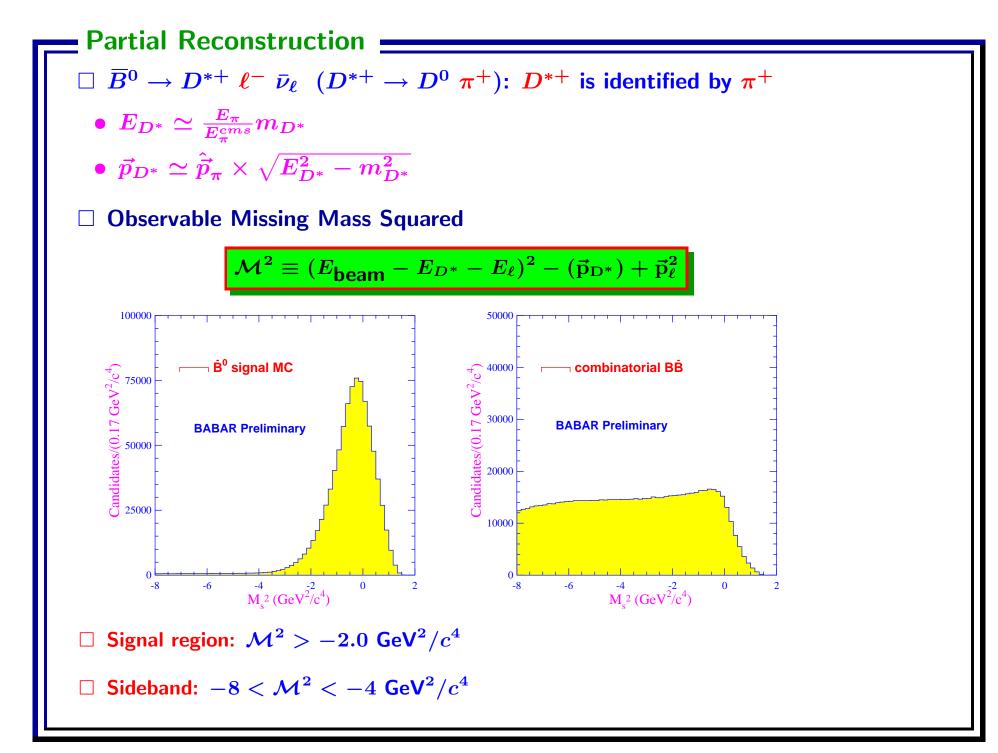
- $f_{00}\equiv {\cal B}(e^+e^ightarrow B^0\overline B{}^0)$ at $\Upsilon(4S)$
 - \Box First direct measurement of f_{00}
 - □ Most published papers assume $f_{00} = 50\%$

- Our result can be used to eliminate above assumption
- □ It is important for normalizing all *B* branching fractions
- \Box Enhance our knowledge of isospin violation effects in $\Upsilon(4S)$ system

Theoretical Predictions

$$\Box \,\, R^{+/0} \equiv rac{f_{+-}}{f_{
m oo}} \sim 1.03 - 1.25$$

Authors	$R^{+/0}\equivrac{f_{+-}}{f_{00}}$
Atwood et al. (1990)	~ 1.18
Byers et al. (1990)	1.05 - 1.10
Lepage (1990)	1.03 - 1.14
Kaiser et al. (2003)	1.04 - 1.25
Voloshin (2003)	~ 1.19


- □ Atwood et al., PRD 41, 1736 ('90)
- □ Byers et al., PRD 42, 3885 ('90)
- □ Lepage, PRD 42, 3251 ('90)
- □ Kaiser et al., PRL 90, 142001 ('03)
- □ Voloshin, MPL. A18, 1783 ('03)

Experimental Results

The previous measurements of $R^{+/0} \equiv \frac{f_{+-}}{f_{00}}$

Mode $B \rightarrow$	$\int {\cal L} dt$ (fb $^{-1}$)	$R^{+/0}\equivrac{f_{+-}}{f_{ m 00}}$	Method	Source
$J/\psi K^{(*)(+/0)}$	9.2	$1.04\pm0.07\pm0.04$	F.R.	CLEO '01
$D^{(*)(+/0)}\ellar u$	2.7	$1.058 \pm 0.084 \pm 0.136$	P.R.	CLEO '02
$J/\psi h^{(+/0)}$	20.7	$1.10 \pm 0.06 \pm 0.05$	F.R.	BABAR '02
Dileptons	29.4	$1.01 \pm 0.03 \pm 0.09$	F.R.	BELLE '03
$J/\psi(K^+/K_s^0)$	81.9	$1.006 \pm 0.036 \pm 0.031$	F.R.	BABAR '04

- F.R. = Full Reconstruction
- P.R. = Partial Reconstruction
 - \Box These $R^{+/0}$ measurements mostly depend on
 - Branching fractions
 - The ratio of B^+ and $\overline{B}{}^0$ lifetime
 - The assumption of isospin symmetry
 - □ P.R. yields large event samples compared to F.R.
 - □ We are using P.R. with double tag technique which does not rely on above assumptions

Tag Selection 📥

- □ Single tags → at least one neutral *B* partially reconstructed Its total yield is denoted by N_s and its missing mass by \mathcal{M}_s^2
- $\Box \quad \textbf{Double tags} \rightarrow \textbf{both neutral}$ B partially reconstructed $Its \text{ total yield is denoted by } N_d$

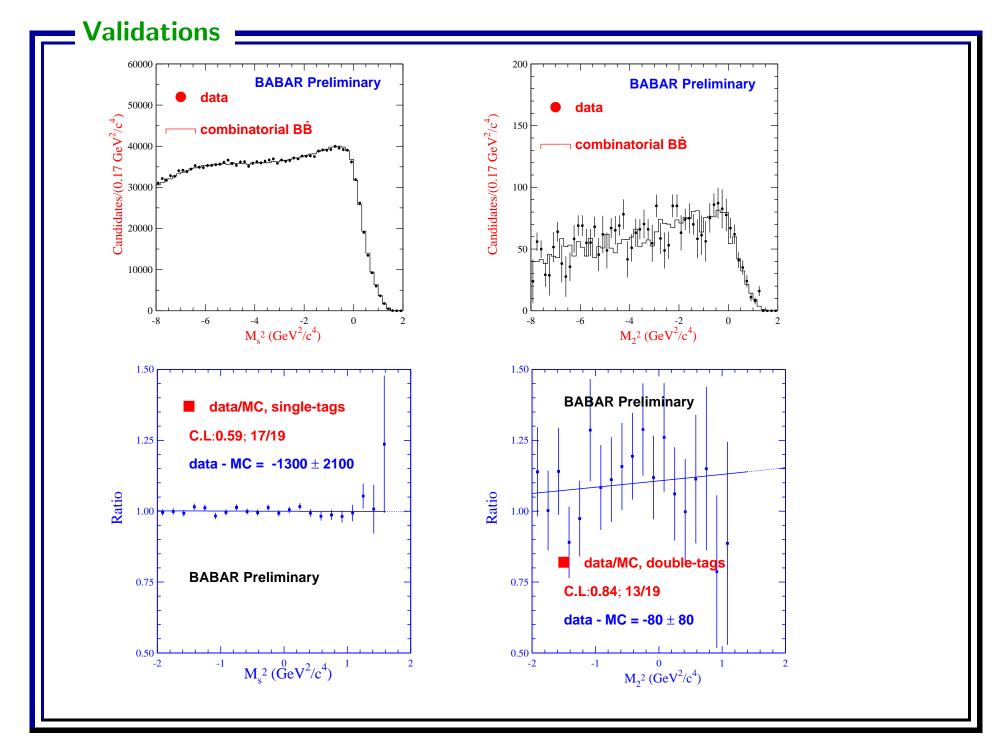
There are 2 missing mass variables

- \mathcal{M}^2 of 1^{st} candidate is \mathcal{M}_1^2
- \mathcal{M}^2 of 2^{nd} candidate is \mathcal{M}_2^2
- □ We used BABAR data
 - 82 $fb^{-1} \Upsilon(4S)$ -resonance (mean energy of 10.580 GeV)
 - 10 fb^{-1} off-resonance

 f_{00} Determination The relation of N_s and N_d to \mathcal{B} $N_s = 2 \, N_{B\overline{B}} \, f_{00} \, \epsilon_s \, \mathcal{B}(\overline{B}{}^0 o D^{*+} \ell^- ar{
u}_\ell)$ $N_d = N_{B\overline{B}} f_{00} \epsilon_d [\mathcal{B}(\overline{B}{}^0 \to D^{*+} \ell^- \bar{\nu}_\ell)]^2$ where $\Box \ N_{B\overline{B}}$ is the total number of $B\overline{B}$ $\Box \epsilon_s(\epsilon_d) =$ reconstruction efficiencies of the single(the double) tags

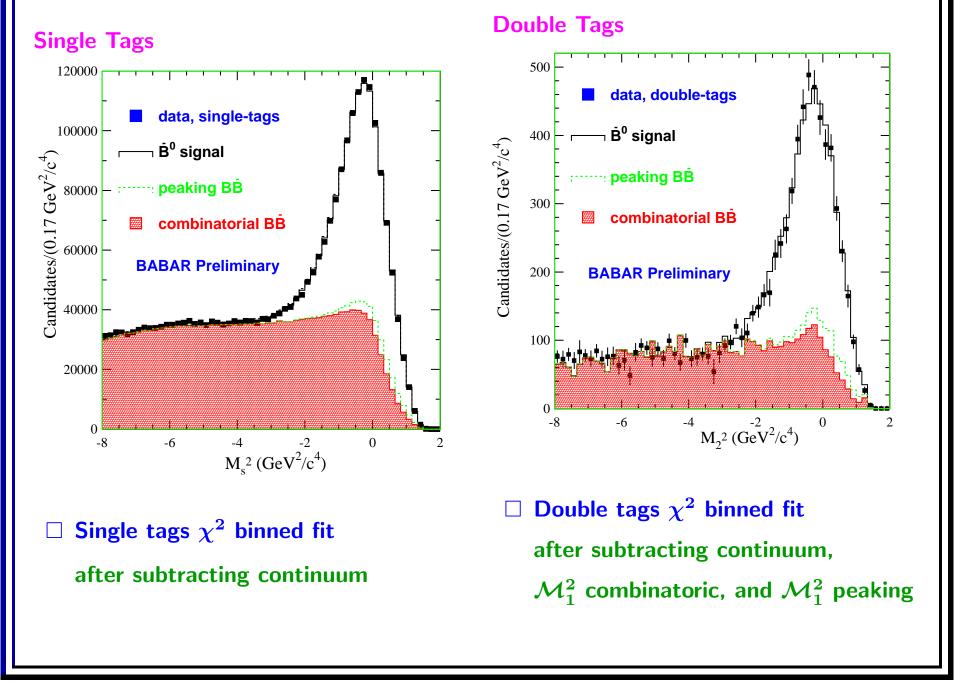
□ Define $C \equiv \epsilon_d/\epsilon_s^2 = 0.9946 \pm 0.0078$ (measured from MC) and solve f_{00}

$$f_{00}=rac{CN_s^2}{4N_dN_{Bar{B}}}$$


Backgrounds

- □ Single & Double Tag Backgrounds
 - Continuum: $e^+e^- \rightarrow \gamma^* \rightarrow q\overline{q}$ (subtracted using off-resonance data)
 - Combinatoric: random combinations of ℓ and π (shape obtained from MC simulated events)
 - Peaking: $B \to D^*(n\pi) \ell \bar{\nu}_{\ell}$, $D^*(n\pi)$ may or may not coming from D^{**} (shape obtained from MC simulated events)

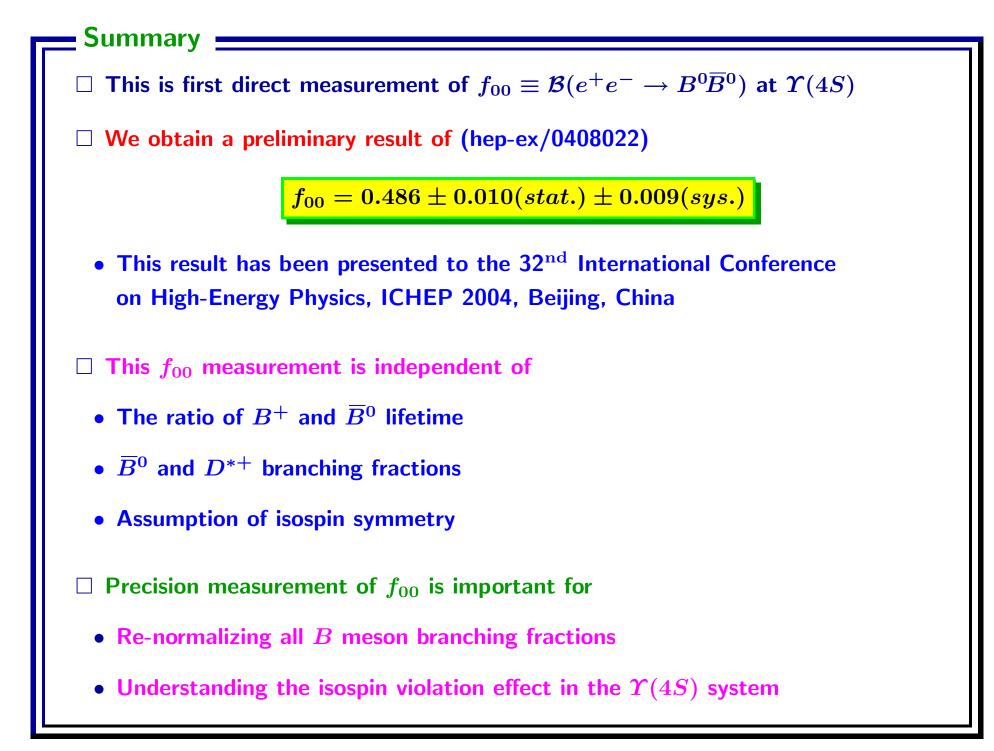
□ Additional backgrounds for double tags


 \$\mathcal{M}_1^2\$ Combinatoric (~ 3%) (subtracted using \$\mathcal{M}_1^2\$ sideband data) 1st candidate is combinatoric \$\mathcal{&}\$ 2nd candidate is signal

 \$\mathcal{M}_1^2\$ Peaking (~ 1%) (subtracted using MC simulated events)
 1st candidate is a peaking & 2nd candidate is signal

First Measurement of $\mathcal{B}(e^+e^- \to B^0\overline{B}^0)$ at $\Upsilon(4S)$ (page 7)

___ Data Fits



Systematic Errors

Summary of the absolute systematic error for f_{00}

Source	$\delta(f_{00})$
B-meson counting	0.0055
Peaking background	0.004
Efficiency correlation	0.004
$\Upsilon(4S) ightarrow$ non- $B\overline{B}$	0.0025
Combinatorial background shape	0.0025
Monte Carlo statistics	0.002
\mathcal{M}_1^2 -combinatorial	0.0005
$\mathcal{M}_1^{ar{2}}$ -peaking	0.0005
Total	0.009

- \Box The largest systematic error comes from *B*-meson counting, including the uncertainties on hadronic selection criteria and tracking efficiency
- □ Systematic error due to lepton and pion momentum spectrums are negligible
- □ This result depends very weakly on the simulated reconstruction efficiency

