

Experimental studies on heavy flavor physics: what is next?

An experimental sketchbook, not a comprehensive review!

Marina Artuso

5/27/2022

M. Artuso FPCP 2022

1

What is flavor physics?

□ Flavor physics is the physics that distinguishes the 3 generations: in the Standard Model described by the Yukawa Lagrangian (fermion masses and *couplings*) Definition of heavy flavor is a bit fuzzy [t-quark is the heaviest and generally in its own category

□ Emphasis of this talk

 – and time span is
 LHC era
 → □ FCC-ee covered by
 R. Novotny
 □ Super tau-charm
 covered by H.P. Peng

Office Marine

Mixing matrices

Quark sector: Cabibbo Kobayashi Maskawa matrix

Lepton sector: Pontercorvo-Maki-Nakagawa-Sakata matrix

$$V_{\left(\frac{2}{3},-\frac{1}{3}\right)} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(\rho-i\eta) \\ -\lambda & 1-\lambda^2/2 & A\lambda^2 \\ A\lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\rho)$$

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{e\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

 λ^4

Flavor physics as a tool for discovery

New physics manifestations in flavor physics = new couplings or new forces

Tree diagram example

Loop diagram example: $B - \overline{B}$ mixing

While all flavors are interesting, the following discussion will focus on b-flavored hadrons, with a very brief excursion into charm

A tale of many scales

Model independent tool of effective Lagrangian

$$\mathscr{L}_{\text{eff}} = \mathscr{L}_{\text{SM}} + \frac{C_5}{\Lambda_M} \mathscr{O}^{(5)} + \sum_a \frac{C_6^a}{\Lambda^2} \mathscr{O}_a^{(6)} + \cdots$$

M. Artuso FPCP 2022

Experimental methods

e⁺e⁻ colliders

b and c hadrons, τ decays

Hadron machines

Charmed hadrons τ decays

M. Artuso FPCP 2022

5/27/2022

The future of K physics

Rare K decays well known theoretically, their experimental study key for SM checks, possibly NP opportunities

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (8.62 \pm 0.42) \times 10^{-11}$ $BR(K_I \to \pi^0 \nu \bar{\nu}) = (2.94 \pm 0.15) \times 10^{-11}$ Buras et al., 2109.11032

CERN

Integrated programme with high-intensity K⁺ and K_L beams proposed to run until ~2039 support from European Strategy (CERN-ESU-014)

Ē,

 $K^+
ightarrow \pi^+
u \overline{
u}$ at ~5% in

- × 4 intensity ~7x10¹⁸ pot/year
- Maintain key performance at high rate: space-time reco., low material, photon effi.
- Much improved time resolution to keep random veto rate under control

$K_I \rightarrow \pi^0 \nu \bar{\nu}$ with ~60 SM events in 5 years

- × 6 intensity ~10¹⁹ pot/year
- 2γ with unbalanced p_T + nothing else
- Optimise beam line to suppress $\Lambda \to n\pi^0$

LAV 22-25 UV/AFC LAV 1-15 PSD 241.5 m 170 m

R&D - GigaTracker <50 ps (LGAD, 3D, 28 nm), KTAG <20 ps (MCP PMTs), new Straw Chambers - New calorimeter: Shashlik with longitudinal information

80 m from targe

130 m

- Small-angle photon veto: compact Cherenkov calorimeter with oriented crystals

J-PARC

1

Advantages of e+e- machines:

- Good photon-π⁰ reconstruction
- □ High flavor tagging efficiency

On the other hand:

Advantages of experiments at LHC:

- □ High statistics, lots of flavored hadron species.
- Boost of the beauty and charmed hadrons and excellent vertex detectors allow precision measurement of the vertex topology information.

Dedicated flavor experiments feature excellent hadron identification

- Lower cross-section
 At the Y(4S) only B⁰ and B⁺
- □ High luminosity challenging

On the other hand:

 Development of clever trigger strategy needed (now LHCb is poised to implement a purely software trigger!) needed
 Lots of particles, pile-ip

Upgrade I

New detector

Silicon Strips

IH

- L_{peak} = 2x10³³ cm⁻² s⁻¹
- $L_{int} = 50 \text{ fb}^{-1} \text{ during } \text{Run } 3 + \text{Run } 4$
- LHCb 50 fb⁻¹: healthy competition with Belle II at 50 ab⁻¹

Upgrade II $\mathcal{L}_{peak} = 1.5 \times 10^{34} cm^{-2} s^{-1}$ $\mathcal{L}_{int} = 300 f b^{-1}$ LHCb Upgrade I

Pan 222824 vert 7630936

LHCb Upgrade II: steps so far

LHCC-2021-012

R&D programme followed

Approved March 2022

by sub-system TDRs

CERN Research Board September 2019 "The recommendation to prepare a framework TDR for the LHCb Upgrade-II was endorsed, noting that LHCb is expected to run throughout the HL-LHC era."

<u>European Strategy Update 2020</u> "The full potential of the LHC and the HL-LHC, including the study of flavour physics, should be exploited"

5/27/2022

Belle II Upgrade(s)

Starting to achieve Super B-factory performance levels. **B** factory reference values: KEKB (1.48 fb-1/day); PEP-II (0.911 fb-1/day); Int(L dt)/day =2.4 fb-1/day (May 18, 2020) Int(L dt)/week = 15 fb-1/week KEKB (8 fb-1/week); PEP-II (5 fb-1/week); Int. Lumi (Delivered) Belle II Online luminosity Exp: 7-25 - All runs 3.0 [fb-1] Integrated luminosity 5000 Recorded Daily 350 Int. Lumi (Delivered) [otal integrated Daily luminosity [fb⁻¹] $\int \mathcal{L}_{Recorded} dt = 362.02 \, [\text{fb}^{-1}]$ 2.5 1000 2022ab 700 700 100 100 100 100 2021c Target 800 4000 Target 2.0 600 510fb-1 480fb-1 400 3000 1.5 200 Base 21/10/1 21/11/30 22/1/30 22/4/1 22/6/1 22/8/1 1.0 2000 0.5 1000 50 Base 0.0 0 21/4/1 22/4/1 23/4/1 24/4/1 25/4/1 26/4/1 20/4/1 Date Updated on 2022/05/04 12:24 [ST

5/27/2022

Medium term plans

SuperKEK-b/Belle II program

- □ Machine consolidation in 4 steps:
 - □ Intermediate luminosity $(1.2 \times 10^{35} cm^{-2} s^{-1}, 5ab^{-1})$
 - □ High luminosity $(6.5 \times 10^{35} cm^{-2} s^{-1})$ + detector upgrade
 - □ Polarization upgrade (advanced R&D)
 - □ Ultra-high luminosity $(4.0 \times 10^{36} cm^{-2} s^{-1}, 250 ab^{-1})$ R&D project
- Now on "Phase 3": luminosity run with complete detector:
 - Pixel detector layer 1+ only 2 ladders in layer
 2; full 4-layer strip detector
 - □ New and difficult accelerator, peak luminosity $\sim 4 \times 10^{34} cm^{-2} s^{-1}$
 - \Box Path to $2 \times 10^{35} cm^{-2} s^{-1}$ identified
 - □ Still large factors to reach $6.5 \times 10^{35} cm^{-2} s^{-1}$

Interplay between theory and experiment

The importance of the hadronic matrix element, example: semileptonic decays. $e_{\tau} u_{\tau} \tau^{-}$

In reality

Utheoretical pillars:

□Insight provided by effective theories [HQET]

or u

q

□Heavy quark expansion [HQE]:

Inclusive processes

В

meson

Progress in lattice QCD calculations [and having the resources to exploit the new computational techniques developed]

pion

How far can the Standard Model go?

CKM sector with tree level processes

Quark Mixing & CKM Matrix

The charged current couples the "up-type quarks" with a linear combination of "down-type" quarks type" quarks

Tree level diagram – SM dominated (with some possible caveats)

Described by CKM matrix [**unitary** matrix] $V_{\left(\frac{2}{3},-\frac{1}{3}\right)} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(\rho-i\eta) \\ -\lambda & 1-\lambda^2/2 & A\lambda^2 \\ A\lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$

 λ =0.225, A=0.8, constraints on $\rho \& \eta$ will be discussed

The reference unitarity triangle

$$R_b = \left| \frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} \right| = \left(1 - \frac{\lambda^2}{2} \right) \frac{1}{\lambda} \frac{|V_{ub}|}{|V_{cb}|}$$

Triangles depict unitarity constraints

The reference unitarity triangle now

~few % uncertainty in individual determinations: lots of room for improvement

Old tensions to be resolved

 $\begin{aligned} \mathbf{x} &= |V_{ub}|_{incl} \times 10^3 = 4.32 \pm 0.29 \\ * &= |V_{ub}|_{excl} \times 10^3 = 3.74 \pm 0.19 \\ + &= |V_{ub}|_{ave} \times 10^3 = 3.89 \pm 0.25 \end{aligned}$

 $\begin{aligned} \mathbf{x} &= |V_{cb}|_{incl} \times 10^3 = 42.16 \pm 0.50 \\ * &= |V_{cb}|_{excl} \times 10^3 = 39.44 \pm 0.63 \\ + &= |V_{cb}|_{ave} \times 10^3 = 41.1 \pm 1.3 \end{aligned}$

See M. Valli, F. Bernlochner presentations

Inclusive: reconstruct a physical property integrated over hadronic final states

Exclusive: reconstruct the hadron in the final state

□ A multidecade puzzle: both $|V_{ub}|$ and $|V_{cb}|$ determination encompass a persisting tension between the values extracted from **inclusive** or **exclusive** final state

The angle γ

Accessible from tree level processes (good Standard Model probe)
 Negligible theoretical uncertainty [Brod-Zupan,arXiV:1308.5663]

Key processes in B⁰ decays

Key processes in charged B decays

More details in D. Manuzzi's talk

LHCb average:

0.2

0

-0.2

5/27/2022

-0.2

0

Species	Value [°]	68.3% CL		95.4% CL	
species		Uncertainty	Interval	Uncertainty	Interval
B^+	61.7	$^{+4.4}_{-4.8}$	[56.9, 66.1]	$^{+8.6}_{-9.5}$	[52.2, 70.3]
B^0	82.0	$^{+8.1}_{-8.8}$	[73.2, 90.1]	$^{+17}_{-18}$	[64, 99]
B_s^0	79	$^{+21}_{-24}$	[55, 100]	$^{+51}_{-47}$	[32, 130]

 $\gamma = (65.4^{+3.8}_{-4.2})^{\circ}$

Average of all the measurements

Future prospects

Illustration using selected decay modes, the neutral modes are really interesting too!

ATL-PHYS-PUB-2018-041

Searching for signatures of new physics in (mostly) rare decays

Mostly interference between loop diagrams with one exception

Rare decays and generic searches for new physics

Model independent parameterization of the new physics that can appear in interference with SM loop diagrams

 $B_s^0 \to \mu^+ \mu^-$

Rare decays are described by an effective Hamiltonian expressed in terms of an operator product expansion:

$$\Box \mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.09^{+0.46+0.15}_{-0.43-0.11}) \times 10^{-9}$$

SM predictions:

$$\overline{Br}_{s\mu}^{(0)} = \begin{pmatrix} 3.599 \\ 3.660 \end{pmatrix} \left[1 + \begin{pmatrix} 0.032 \\ 0.011 \end{pmatrix}_{f_{B_s}} + 0.031|_{CKM} + 0.011|_{m_t} \\ + 0.006|_{pmr} + 0.012|_{non-pmr} \stackrel{+0.003}{_{-0.005}}|_{LCDA} \right] \cdot 10^{-9},$$

$$5/27/2022 \qquad M. Artuso FPCP 2022$$

inclusive

$B \to K^{(*)}\ell^+\ell^-$ and $b \to s\ell^+\ell^-$

- □Different lepton pairs accessible in the final states, precise SM prediction of ratios⇒ lepton flavor universality tests
- \Box When a vector is involved in the final state many observables

M. Artuso FPCP 2022

Several tensions currently reported in $B \rightarrow K^{(*)}\mu^+\mu^-$

Nicola Serra's talk

Future prospects: two snashots

4% experimental error on $B \to K^* \nu \bar{\nu}$ with 250ab⁻¹

Current LH	ICb Data	LHC	b				
Projection	for the SM		1				
Projection for a vector-axial-vector NP contribution							
- Projection	for a pure vector NP	contribution	-				
1 Contours drawn	at 3 σ		-				
10			-				
Q -			-				
< ↓			-				
-			-				
0							
- LĤ	Cb projectio	ons	-				
	1 3						
-2	-1	0	1				
	ΔC	9					
Integrated Luminosity	$3\mathrm{fb}^{-1}$	$23{ m fb}^{-1}$	$300{\rm fb}^{-1}$				
R_K and R_{K^*} measurements							
$\sigma(C_9)$	0.44	0.12	0.03				
$\Lambda^{\text{tree generic}}$ [TeV]	40	80	155				
$\Lambda^{\text{tree MFV}}$ [TeV]	8	16	31				
$\Lambda^{\text{loop generic}}$ [TeV]	3	6	12				
$\Lambda^{\rm loopMFV}$ [TeV]	0.7	1.3	2.5				
$B^0 \rightarrow B^0$	$K^{*0}\mu^+\mu^-$ ang	ular analysis					
$\sigma^{\text{stat}}(S_i)$	0.034-0.058	0.009-0.016	0.003-0.004				
$\sigma(C'_{10})$	0.31	0.15	0.06				
$\Lambda^{\text{tree generic}}$ [TeV]	50	75	115				
$\Lambda^{\text{tree MFV}}$ [TeV]	10	15	23				
$\Lambda^{\text{loop generic}}$ [TeV]	4	6	9				
$\Lambda^{\text{loop MFV}}$ [TeV]	0.8	1.2	1.9				

M. Artus

Projection of LHCb sensitivities to key physics quantities

Observable	Current LHCb	Upgr	ade I	Upgrade II
	(up to 9 fb ⁻¹)	(23fb^{-1})	(50fb^{-1})	(300fb^{-1})
CKM tests				
$\gamma (B \rightarrow DK, etc.)$	4° [9,10]	1.5°	1°	0.35°
$\phi_s (B_s^0 \rightarrow J/\psi \phi)$	49 mrad [8]	$14\mathrm{mrad}$	$10 \mathrm{mrad}$	4 mrad
$ V_{ub} / V_{cb} $ $(\Lambda_b^0 \rightarrow p\mu^- \overline{\nu}_{\mu}, etc.)$	6% [29,30]	3%	_	1%
$a^d_{ m sl}~(B^0 ightarrow D^- \mu^+ u_\mu)$	36×10^{-4} [34]	8×10^{-4}	5×10^{-4}	2×10^{-4}
$a^s_{ m sl} \ (B^0_s o D^s \mu^+ u_\mu)$	33×10^{-4} [35]	$10 imes 10^{-4}$	7×10^{-4}	$3 imes 10^{-4}$
Charm				
ΔA_{CP} $(D^0 \rightarrow K^+K^-, \pi^+\pi^-)$	29×10^{-5} [5]	17×10^{-5}		3.0×10^{-5}
$A_{\Gamma} (D^0 \rightarrow K^+ K^-, \pi^+ \pi^-)$	13×10^{-5} [38]	$4.3 imes10^{-5}$	_	1.0×10^{-5}
$\Delta x \ (D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^-)$	18×10^{-5} [37]	$6.3 imes10^{-5}$	$4.1 imes 10^{-5}$	$1.6 imes 10^{-5}$
Rare Decays				
$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	-) 71% [40,41]	34%	_	10%
$S_{\mu\mu}$ $(B^0_s \rightarrow \mu^+\mu^-)$	_		_	0.2
$A_{\rm T}^{(2)} \ (B^0 \to K^{*0} e^+ e^-)$	0.10 [52]	0.060	0.043	0.016
$A_{\rm T}^{\rm fm} \ (B^0 \rightarrow K^{*0} e^+ e^-)$	0.10 [52]	0.060	0.043	0.016
$\mathcal{A}_{\phi\gamma}^{\Delta\Gamma}(B^0_s \to \phi\gamma)$	$^{+0.41}_{-0.44}$ [51]	0.124	0.083	0.033
$S_{\phi\gamma}(B^0_s \to \phi\gamma)$	0.32 [51]	0.093	0.062	0.025
$\alpha_{\gamma}(\Lambda_b^0 \to \Lambda \gamma)$	$^{+0.17}_{-0.29}$ [53]	0.148	0.097	0.038
Lepton Universality Tests				
$R_K (B^+ \rightarrow K^+ \ell^+ \ell^-)$	0.044 [12]	0.025	0.017	0.007
$R_{K^{\bullet}}$ $(B^0 \rightarrow K^{\bullet 0} \ell^+ \ell^-)$	0.10 [61]	0.031	0.021	0.008
$R(D^{\bullet}) \ (B^0 \to D^{\bullet-}\ell^+\nu_{\ell})$	0.026 [62, 64]	0.007		0.002

arXiV:2203.11349

Belle II projection, long term plans in early phase of discussion/study

Observable	2022	Belle-II	Belle-II	Belle-II
	Belle(II),	5 ab^{-1}	$50 { m ~ab^{-1}}$	$250 \ {\rm ab}^{-1}$
	BaBar			
$\sin 2\beta/\phi_1$	0.03	0.012	0.005	0.002
γ/ϕ_3 (Belle+BelleII)	11°	4.7°	1.5°	0.8°
α/ϕ_2 (WA)	4°	2°	0.6°	0.3°
$ V_{ub} $ (Exclusive)	4.5%	2%	1%	< 1%
$S_{CP}(B \rightarrow \eta' K_{\rm S}^0)$	0.08	0.03	0.015	0.007
$A_{CP}(B \to \pi^0 \bar{K}_{\rm S}^0)$	0.15	0.07	0.025	0.018
$S_{CP}(B \to K^{*0}\gamma)$	0.32	0.11	0.035	0.015
$R(B \to K^* \ell^+ \ell^-)^\dagger$	0.26	0.09	0.03	0.01
$R(B \rightarrow D^* \tau \nu)$	0.018	0.009	0.0045	< 0.003
$R(B \to D\tau\nu)$	0.034	0.016	0.008	< 0.003
$\mathcal{B}(B \to \tau \nu)$	24%	9%	4%	2%
$B(B \to K^* \nu \bar{\nu})$	_	25%	9%	4%
$\mathcal{B}(\tau \to \mu \gamma)$ UL	$42 imes 10^{-9}$	$22 imes 10^{-9}$	$6.9 imes10^{-9}$	$3.1 imes10^{-9}$
$\mathcal{B}(\tau \to \mu \mu \mu)$ UL	$21 imes 10^{-9}$	$3.6 imes10^{-9}$	$0.36 imes10^{-9}$	$0.073 \times$
				10^{-9}

Table 2: Projected precision (total uncertainties, or 90% CL upper limits) of selected flavour physics measurements at Belle II.(The \dagger symbol denotes the measurement in the momentum transfer squared bin $1 < q^2 < 6 \text{ GeV}/c^2$.)

Conclusions

- Precision SM tests in flavor observables still key: deviations may be subtle!
- □Intriguing tensions in flavor physics observables have emerged: increase in precision of upgraded experiments is needed to gain a complete picture
- □A rich and diverse experimental program is under way:
 - □Rare K decays offer unique probes of SM and beyond with the prospect of measuring few 10² events of ultra rare $K \rightarrow \pi \nu \bar{\nu}$
 - Super tau-charm factories proposed to continue the program of BESII
 - Belle II and LHCb will provide complementary information on the full SM reach and a variety of new physics prospects
 - Atlas and CMS will continue b-physics program with muons in the final state
- □Precise calculations of the hadronic matrix element are necessary to complete this exciting physics program

The end

With many thanks to the organizers for a lovely conference and for honoring the memory of Sheldon!

The LHCb detector 2010-2018

□Key performance parameters:

- □Vertex resolution: PV with 25 tracks has 13µm resolution in xy and 71µm in z & asymptotic IP 13µm
- Decay time resolution 50fs
- □Mass resolution $\frac{\sigma_m}{m}$ =0.5%, (*m* < ~20 *GeV*) □Excellent hadron ID
- □Fast software trigger

LHCb Methodology: study b and c in the forward direction at the LHC

- In the forward region at LHC the $b\bar{b}$ production σ is large
- The hadrons containing the b & b quarks are both likely to be in the acceptance. Essential for "flavor tagging"
- □LHCb uses the forward direction where the B's are moving with considerable momentum ~100 GeV, thus minimizing multiple scattering
- \Box At $\mathcal{L}=2x10^{32}/\text{cm}^2/\text{s}$, we get 10^{12} B hadrons in 10^7 sec

Flavor as a High Mass Probe

Interpretations:

- 1. New particles have large masses >>1 TeV
- 2. Mixing angles in new sector are small, same as in SM (MFV)
- The above already implies strong constrains on NP

& Perez arXiv:1002.0900; Neubert

Most recent LHCb combination

- Many measurements of γ with this approach, they differ on the D⁰ decay modes considered
- LHCb has a rich array of data, internal combination of different measurements reported previously
- □ LHCb has also precise measurements of D⁰ mixing parameters \Rightarrow New combination of γ and charm mixing parameters arXiV:2110.023350

Measurements used in the combination

- □First combination where the LHCb charm inputs are included
- "updated" with respect to <u>LHCb-CONF-2018-002</u>
- □Frequentist approach with 151 observables to determine 52 parameters

Decay	Parameters	Source	Ref.	Status since
U				Ref. [17]
$B^{\pm} \rightarrow DK^{*\pm}$	$\kappa_{B\pm}^{DK^{*\pm}}$	LHCb	[24]	As before
$B^0 \to DK^{*0}$	$\kappa_{B^0}^{DK^{*0}}$	LHCb	[45]	As before
$B^0 \to D^{\mp} \pi^{\pm}$	β	HFLAV	[11]	Updated
$B^0_s \to D^\mp_s K^\pm(\pi\pi)$	ϕ_s	HFLAV	[11]	Updated
$D \to h^+ h^- \pi^0$	$F^+_{\pi\pi\pi^0}, F^+_{K\pi\pi^0}$	CLEO-c	[46]	As before
$D \to \pi^+\pi^-\pi^+\pi^-$	$F_{4\pi}^+$	CLEO-c	[46]	As before
$D \to K^+ \pi^- \pi^0$	$r_D^{K\pi\pi^0}, \delta_D^{K\pi\pi^0}, \kappa_D^{K\pi\pi^0}$	CLEO-c+LHCb+BESIII	[47-49]	Updated
$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$r_D^{K3\pi}, \delta_D^{K3\pi}, \kappa_D^{K3\pi}$	CLEO-c+LHCb+BESIII	[41, 47-49]	Updated
$D \to K^0_{\rm S} K^{\pm} \pi^{\mp}$	$r_D^{K^0_{\mathrm{S}}K\pi}, \delta_D^{K^0_{\mathrm{S}}K\pi}, \kappa_D^{K^0_{\mathrm{S}}K\pi}$	CLEO	[50]	As before
$D \to K^0_{\rm S} K^{\pm} \pi^{\mp}$	$r_D^{K_{ m S}^0K\pi}$	LHCb	[51]	As before

B decay	D decay	Ref.	Dataset	Status since
				Ref. [17]
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ h^-$	[20]	Run 1&2	Updated
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[21]	Run 1	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ h^- \pi^0$	[22]	Run 1	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_{\rm S}^0 h^+ h^-$	[19]	Run 1&2	$\mathbf{Updated}$
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K^0_S K^{\pm} \pi^{\mp}$	[23]	Run 1&2	$\mathbf{Updated}$
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \to h^+ h^-$	[20]	Run $1\&2$	$\mathbf{Updated}$
$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+ h^-$	[24]	Run 1&2(*)	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+\pi^-\pi^+\pi^-$	[24]	Run 1&2(*)	As before
$B^\pm \to D h^\pm \pi^+ \pi^-$	$D \to h^+ h^-$	[25]	Run 1	As before
$B^0 \rightarrow DK^{*0}$	$D \to h^+ h^-$	[26]	Run 1&2(*)	$\mathbf{Updated}$
$B^0 \rightarrow DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[26]	Run 1&2(*)	New
$B^0 \rightarrow DK^{*0}$	$D ightarrow K_{ m S}^0 \pi^+ \pi^-$	[27]	Run 1	As before
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$	[28]	Run 1	As before
$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$	$D_s^+ \to h^+ h^- \pi^+$	[29]	Run 1	As before
$B_s^0 \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ \to h^+ h^- \pi^+$	[30]	Run 1&2	New
D decay	Observable(s)	Ref.	Dataset	Status since
				Ref. [17]
$D^0 ightarrow h^+ h^-$	ΔA_{CP}	[31 - 33]	Run 1&2	New
$D^0 ightarrow h^+ h^-$	y_{CP}	[34]	Run 1	New
$D^0 ightarrow h^+ h^-$	ΔY	[35 - 38]	Run $1\&2$	New
$D^0 \to K^+ \pi^-$ (Single Tag)	$R^{\pm},(x'^{\pm})^2,y'^{\pm}$	[<mark>39</mark>]	Run 1	New
$D^0 \to K^+ \pi^-$ (Double Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[40]	Run 1&2(*)	New
$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	$(x^2 + y^2)/4$	[41]	Run 1	New
$D^0 \rightarrow K^0_{ m S} \pi^+ \pi^-$	x, y	[42]	Run 1	New
$D^0 \rightarrow K^0_S \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[43]	Run 1	New
$D^0 \rightarrow K_S^0 \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[44]	Run 2	New

Measurement of γ with $B^{\pm} \rightarrow Dh^{\pm}\pi^{0}$

□Final states $D \rightarrow \pi^{-}\pi^{+}\pi^{0}$ and $D \rightarrow K^{-}K^{+}\pi^{0}$ are mixture of CP odd and CP even eigenstates [⇒ dilution factor of the overall CP asymmetry] □11 CP observables measured

$R^{KK\pi^0}$	=	1.021	\pm	0.079	\pm	0.005
$R^{\pi\pi\pi^0}$	=	0.902	\pm	0.041	\pm	0.004
$A_K^{K\pi\pi^0}$	=	-0.024	\pm	0.013	\pm	0.002
$A_K^{KK\pi^0}$	=	0.067	\pm	0.073	\pm	0.003
$A_K^{\pi\pi\pi^0}$	=	0.109	\pm	0.043	\pm	0.003
$A_{\pi}^{KK\pi^0}$	=	-0.001	\pm	0.019	\pm	0.002
$A_{\pi}^{\pi\pi\pi^{0}}$	=	0.001	\pm	0.010	\pm	0.002
R_K^+	=	0.0179	±	0.0024	\pm	0.0003
R_K^-	=	0.0085	\pm	0.0020	\pm	0.0004
R_{π}^+	=	0.00188	±	0.00027	\pm	0.00005
R_{π}^{-}	=	0.00227	\pm	0.00028	\pm	0.00004

arXiV 2112.10617

$$\begin{array}{rcl} \gamma & = & (56 \substack{+24 \\ -19})^{\circ}, \\ \delta_B & = & (122 \substack{+19 \\ -23})^{\circ}, \\ r_B & = & (9.3 \substack{+1.0 \\ -0.9}) \times 10^{-2}, \end{array}$$

Other branching fractions

https://arxiv.org/pdf/2103.11769

LFU violation in $B^+ \to K^+ \ell^+ \ell^-$

$$R_{K} = \frac{Br(B \to K\mu^{+}\mu^{-})}{Br(B \to Ke^{+}e^{-})}$$

The quantity of interest

$$R_{K} = \frac{B^{-} \to K^{-} \mu^{+} \mu^{-} / B^{-} \to J / \psi (\to \mu^{+} \mu^{-}) K^{-}}{B^{-} \to K^{-} e^{+} e^{-} / B^{-} \to J / \psi (\to e^{+} e^{-}) K^{-}}$$

$$R_{J/\psi} = \frac{B^- \to J/\psi(\to \mu^+ \mu^-)K^-}{B^- \to J/\psi(\to e^+ e^-)K^-} = 0.981 \pm 0.020$$

$$\frac{d\mathcal{B}(B^- \to K^- e^+ e^-)}{dq^2} = \left(28.6^{+1.5}_{-1.4} \pm 1.3\right) \times 10^{-9}/GeV^2$$

In 1.1<q²<6.0 GeV², consistent with SM expectations

$$R_K(1.1 < q^2 < 6.0 \,\text{GeV}^2/c^4) = 0.846 \,{}^{+0.042}_{-0.039} \,{}^{+0.013}_{-0.012}$$

The quantity measured: double ratio of corrected yields, only relative efficiency needed

LFU in the isospin partners $B^0 \to K^0_s \ell^+ \ell^-$, $B^+ \to K^{*+} \ell^+ \ell^-$

