Rare Charm Decays

Marco Destefanis

Università degli Studi di Torino and INFN

Overview

Introduction
Rare charm decays

Physics highlights
Flavor Changing Neutral Current
Lepton Flavor Violation
Lepton Number Violation
Baryon Number Violation

> Summary

Rare Charm Decays

Processes:

Standard Model is dominant (SM) Standard Model contribution is highly suppressed (SM + New Physics) Standard Model contribution is forbidden (New Physics)

• Branching ratios of about 10⁻⁹ or smaller

FCNC: Flavour Cahnging Neutral Current

BNV: Baryon Number Violation

LNV: Lepton Number Violation

LFV: Lepton Flavour Violation

$D^{0} \rightarrow \mu^{+} e^{-}$ $D^{0} \rightarrow p e^{-}$ $D^{+}_{(s)} \rightarrow h^{+} \mu^{+} e^{-}$	$D^+_{(s)} \rightarrow \pi^+ l^+ l^-$ $D^+_{(s)} \rightarrow K^+ l^+ l^-$ $D^0 \rightarrow K^- \pi^+ l^+ l^-$ $D^0 \rightarrow K^{+0} l^+ l^-$	$D^{0} \rightarrow \pi^{-} \pi^{+} V(\rightarrow ll) \qquad D^{0} \rightarrow K^{*0} \gamma$ $D^{0} \rightarrow \rho V(\rightarrow ll) \qquad D^{0} \rightarrow (\phi, \rho, \omega) \gamma$ $D^{0} \rightarrow K^{+} K^{-} V(\rightarrow ll) \qquad D^{s} \rightarrow \pi^{+} \phi(\rightarrow ll)$ $D^{0} \rightarrow \phi V(\rightarrow ll) \qquad D^{s} \rightarrow \pi^{+} \phi(\rightarrow ll)$

LFV, LNV,	BNV			FC	NC				VMD	ł	kadia	tive
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴
$D^+_{(s)} \rightarrow h^- l^+ l^+$				D^0	$\rightarrow \mu\mu$	$D^0 \rightarrow \pi$	$\pi^{-}\pi^{+}l^{+}l^{-}$	$D^0 \rightarrow$	$\frac{K^+\pi^-V(\cdot)}{-\cdot^{*0}}$	$\rightarrow ll$) D	$^+ \rightarrow \pi^+ \phi$	$(\rightarrow ll)$
$D^0 \to X^0 \mu^+ e^-$			D^0	$\rightarrow ee$		$D^0 \rightarrow \rho$	l^+l^-	$D^0 \rightarrow D^0 \rightarrow$	$K^{\vee}V(\rightarrow)$	(ll) D'	$V \to K^- \pi$ $V \to K^{\star 0} V$	$^{+}V(\rightarrow ll)$
$D^0 \to X^{} l^+ l^+$						$D^{\circ} \rightarrow K$ $D^{0} \rightarrow d$	Δ [⁺]		//	Ľ	, 11 ,	(,,,,)

Rare Charm Decays

• Charm hadron: contains up-type heavy quark

complementary information to B and K sector in NP search

- Strong GIM mechanism in charm decays
- Constrain effects from New Physics
- Processes are forbidden at tree level in the SM, but allowed in loop and box diagrams
- Short distance contributions at one-loop level GIM cancellation is almost exact
 BF = O(10⁻⁹)
- Long distance contributions

Vector Meson Dominance (VMD) BF = O(10⁻⁶)

- Away from long-distance contributions, potential for New Physics to be visible
- Test of Lepton Universality, by comparing decays to electrons vs muons 4

Experimental Scenarios

Experiments	Decay Chain	Benefit			
<image/>	e^+ π e^+e^- π e^+e^-	 Extremely clean environment DT method, almost bkg free Quantum coherence High trigger efficiency Easy detection of neutrals and electrons 			
Babar Detector Cutrus Drift Charles For enter Si vix. def. 3yr. DSSD	D ⁰ (cū) + X e ⁺ e ⁻ D ^{*-} (cd) + X'	 Clean environment High trigger efficiency Easy detection of neutrals Boost: time-dependent analysis 			
	Prompt $D \rightarrow K \pi^{+}$ $P \rightarrow PV$ P $D \rightarrow K \pi^{+}$ $P \rightarrow PV$ P $D^{0} \times T^{+}$ $P \rightarrow PV$ P PV PV	 Large production rate Large boost: excellent time resolution 			

Latest Rare Charm Decays Investigations

```
• Flavor Changing Neutral Current

2019: D^0 \rightarrow K^-\pi^+e^+e^- (BABAR, PRL 122, 081802)

2021: J/\psi \rightarrow D^-e^+\nu_e (BESIII, JHEP06 157)

2021: D^+_{(5)} \rightarrow hl^+l^- (LHCb, JHEP06 044)

2021: D^0 \rightarrow h^+h^-\mu^+\mu^- (LHCb, arXiv:2111.03327, submitted to PRL)

2022: D^0 \rightarrow \pi^0\nu\nu (BESIII, PRD 105, 071102)
```

Lepton Flavor Violation
 2020: D⁰ -> hh'l⁺l⁻ (BABAR, PRL 124, 071802)
 2020: D⁰ -> X⁰e[±]μ[∓] (BABAR, PRD 101, 112003)
 2021: D⁺₍₅₎ -> he[±]μ[∓] (LHCb, JHEP06 044)

Lepton Number Violation
 2019: D -> Kπe+e+ (BESIII, PRD 99, 112002)
 2020: D⁰ -> hh'l+l+ (BABAR, PRL 124, 071802)
 2021: D+(5) -> hl+l+ (LHCb, JHEP06 044)

Baryon/Lepton Number Violation
 2020: D⁺ → Λ(Σ⁰)e⁺, D⁺ → Λ(Σ⁰)e⁺ (BESIII, PRD 101, 031102)
 2022: D⁰ → pe⁻ + c.c. (BESIII, PRD 105, 032006)

• In SM, FCNC is strongly suppressed by GIM mechanism and can happen only through loop diagram, leading to a very small BF, 10⁻⁹, theoretically

- The suppression in charm decays is much stronger than those in B and K system due to stronger diagram cancellation than the down-type quarks
- However, it can reach 10⁻⁶ under LD contribution
- Sensitive to New Physics

- 9 fb⁻¹ at 7, 8, and 13 TeV
- $D^{*+} \rightarrow D^{0}\pi^{+}$, $D^{0} \rightarrow h^{+}h^{-}\mu^{+}\mu^{-}$, $h = \pi$, K
- Decays described by: q²=m²(μ⁺μ⁻), p²=m²(h⁺h⁻), θ_μ, θ_h, φ
- Differential decay rate depends on 9 angular coefficients I₁₋₉

$$\langle I_2 \rangle = \frac{\Gamma(|\cos \theta_{\mu}| > 0.5) - \Gamma(|\cos \theta_{\mu}| < 0.5)}{\Gamma(|\cos \theta_{\mu}| > 0.5) + \Gamma(|\cos \theta_{\mu}| < 0.5)}$$

 $\begin{array}{l} \text{CP average} \quad \langle S_{\rm i} \rangle = \frac{1}{2} \left[\langle I_{\rm i} \rangle + (-) \langle \overline{I_{\rm i}} \rangle \right] \\ \text{Asymmetry} \quad \langle A_{\rm i} \rangle = \frac{1}{2} \left[\langle I_{\rm i} \rangle - (+) \langle \overline{I_{\rm i}} \rangle \right] \end{array}$

- Signal: Hypatia distribution
- Background: Johnson S_U distribution + exponential

D⁰ -> **h**⁺**h**⁻μ⁺μ⁻

 $\vec{n}_{\mu\mu}$

D⁰ -> **h**⁺**h**⁻μ⁺μ⁻

$$\langle S_{\mathbf{i}} \rangle = \frac{1}{2} \left[\langle I_{\mathbf{i}} \rangle + (-) \langle \overline{I}_{\mathbf{i}} \rangle \right]$$

$$\langle A_{\mathbf{i}} \rangle = \frac{1}{2} \left[\langle I_{\mathbf{i}} \rangle - (+) \langle \overline{I}_{\mathbf{i}} \rangle \right]$$

- Null-test observables: $\langle S_{5-7} \rangle$ and $\langle A_{2-9} \rangle$ in agreement with the SM null-hypothesis
- Constrain parameters of physics models
- First full angular analysis

- 2.93 fb⁻¹ @ 3,773 GeV
- Decay chain e⁺e⁻ -> D⁰D
 ⁰, D⁰ -> π⁰νν
 D
 ⁰ -> K⁺π⁻, K⁺π⁻π⁰, K⁺π⁻π⁻π⁺
- First experimental search
- No long distance contributions
- Double-Tag method
- Energy difference: $\Delta E = E_{DObar} E_{beam}$ Beam constrained mass: $M_{BC} = \sqrt{E_{beam}^2/c^4 - |\vec{p}_{\overline{D}^0}|^2/c^2}$
- Branching fraction: $B_{sig} = \frac{N_{sig}}{B_{\pi^0 \to \gamma\gamma} \sum_a N^a_{tag} \varepsilon^a_{tag,sig} / \varepsilon^a_{tag}}$, a indicate the tag mode
- Background: model obtained with data-driven method

$$D^0 \rightarrow \pi^0 v \overline{v}$$

 M_{miss}^2 [GeV²/c⁴]

Upper limit at 90% CL: $B_{sig} = 2.1 \times 10^{-4}$ First experimental search for $D^0 \rightarrow \pi^0 v \overline{v}$ Plan to collect about 20 fb⁻¹ at $\psi(3770)$

LFV Processes

• The LFV process is forbidden in SM, however, flavor non-conserving mixing among generations has been observed in neutrino oscillations.

• The smallness of neutrino masses leads to a very large suppression of the predicted branching fractions ^[1]. So, any significant sign of a LFV signal could indicate physics beyond the SM.

[1] L. Calibbi et al. Riv. Nuovo Cimento 41, 71 (2018)

LFV Processes

- 468 fb⁻¹ @ Y(4S)
- 39 fb⁻¹ "off peak" (40 MeV below Y(45))

 $D^0 \rightarrow X^0 e^{\pm} \mu^{\mp}$

- Decay chain $e^+e^- \rightarrow c\overline{c}$, $D^{*+} \rightarrow D^0\pi^+$
- 8 decay modes: $D^0 \rightarrow X^0 e^{\pm} \mu^{\mp}$ $X^0 = \pi^0, \eta, K_S^0, \rho, \omega, \varphi, K^{*0}(->K^-\pi^+)$
- 3 normalization modes $D^{0} \rightarrow K^{-}\pi^{+}\pi^{-}, K^{-}K^{+}\pi^{+}\pi^{-}, \pi^{-}\pi^{+}\pi^{+}\pi^{-}$
- Full reconstruction of signal modes
- Maximum likelyhood fit to $\Delta m = m(D^{*+}) m(D^0)$
- Branching fraction: $\mathcal{B}_{sig} = \frac{N_{sig}}{N_{norm}} \frac{\epsilon_{norm}}{\epsilon_{sig}} \frac{\mathcal{L}_{norm}}{\mathcal{L}_{sig}} \frac{\mathcal{B}_{norm}}{\mathcal{B}(X^0)}$
- Signal: Cruijff function,
 φ mode: 2 asymmetric-sigma Gaussian
 Background: Argus function

LFV Processes

 $D^0 \rightarrow X^0 e^{\pm} \mu^{\mp}$

- No signal found
- Upper limits calculated at 90% confidence level using Feldman-Cousins method
- 1-2 order of magnitude more stringent constraints

				<i>B</i> 90% U.	L. $(\times 10^{-7})$
Decay mode	$N_{\rm sig}$ (candidates)	$\epsilon_{\rm sig}~(\%)$	$\mathcal{B}~(imes 10^{-7})$	BABAR	Previous
$D^0 o \pi^0 e^{\pm} \mu^{\mp}$	$-0.3 \pm 2.0 \pm 0.9$	2.15 ± 0.03	$-0.6 \pm 4.8 \pm 2.2$	8.0	860
$D^0 \to K^0_S e^{\pm} \mu^{\mp}$	$0.7\pm1.7\pm0.7$	3.01 ± 0.04	$1.9\pm4.6\pm1.9$	8.7	500
$D^0 \to \bar{K}^{*0} e^{\pm} \mu^{\mp}$	$0.8\pm1.8\pm0.8$	2.31 ± 0.03	$2.8\pm6.1\pm2.6$	12.5	830
$D^0 \to \rho^0 e^{\pm} \mu^{\mp}$	$-0.7 \pm 1.7 \pm 0.4$	2.10 ± 0.03	$-1.8 \pm 4.4 \pm 1.0$	5.0	490
$D^0 \rightarrow \phi e^{\pm} \mu^{\mp}$	$0.0\pm1.4\pm0.3$	3.43 ± 0.04	$0.1\pm3.8\pm0.9$	5.1	340
$D^0 \to \omega e^{\pm} \mu^{\mp}$	$0.4 \pm 2.3 \pm 0.5$	1.46 ± 0.03	$1.8\pm9.5\pm1.9$	17.1	1200
$D^0 \to \eta e^{\pm} \mu^{\mp}$			$6.1\pm9.7\pm2.3$	22.5	1000
with $\eta \rightarrow \gamma \gamma$	$1.6\pm2.3\pm0.5$	2.96 ± 0.04	$7.0 \pm 10.5 \pm 2.4$	24.0	
with $\eta \to \pi^+ \pi^- \pi^0$	$0.0\pm2.8\pm0.7$	2.46 ± 0.04	$0.4\pm25.8\pm6.0$	43.0	

LNV Processes

- Lepton number (LN) is conserved in the Standard Model.
- Neutrino oscillation $\rightarrow m_{y} \neq 0 \rightarrow \text{New Physics scenario}$.
- Nature of neutrino: Majorana or Dirac?
- Majorana neutrino can violate LN by two unit
- LNV is introduced in many New Physics models

Dirac

LNV Processes

2.93 fb⁻¹ @ 3.773 GeV

Single-Tag analysis

3 channels investigated

$$\Delta E = E_D - E_{\text{beam}} \qquad M_{\text{BC}} = \sqrt{E_{\text{beam}}^2 - |\vec{p}_D|^2},$$

Requirements on ΔE to suppress background

Branching fraction:

$$\mathcal{B}_{D \to K\pi e^+ e^+} = \frac{N_{\text{sig}}}{2 \cdot N_{\text{D}\bar{\text{D}}}^{\text{tot}} \cdot \epsilon \cdot \mathcal{B}}$$

Channels investigated | UL @ 90% CL $D^0 \rightarrow V^- \pi^- a^+ a^+$ <2.8×10⁻⁶

$$D^{+} \to K^{0} \pi^{-} e^{+} e^{+} \qquad (2.5 \times 10^{-6})^{0} + \frac{1.84}{1.85} \qquad (3.3 \times 10^{-6})^{0} + \frac{1.84}{1.85$$

LNV Processes

Different m_v hypothesis tested

between 0.25 and 1 GeV/ c^2

BF related to mixing matrix elements

$$\frac{\Gamma(m_{\nu_m}, V_{e\nu_m}(m_{\nu_m}))}{\Gamma(m_{\nu_m}, V'_{e\nu_m}(m_{\nu_m}))} = \frac{|V_{e\nu_m}(m_{\nu_m})|^4}{|V'_{e\nu_m}(m_{\nu_m})|^4}$$
 17
[Chin. Phys. C 39, 013101 (2015)]

BNV & LNV Processes

- Asymmetry of matter and anti-matter
- Universe evolution
- BNV: even a small amount would have major consequences on the universe and its evolution.
- BNV is allowed in GUTs and SM extensions
- Prediction of $B(D^+ \rightarrow (\overline{\Lambda}I^+)$ is no more than 10⁻²⁹ (PRD72, 095001)

BNV-LNV Processes

Signal: MC shape + Gaussian Background: ARGUS function Branching fraction $B^{UL} = N_{sig}^{UL}/(2 \cdot N_{D^+D^-}^{tot} \cdot \varepsilon \cdot B_{\Lambda,\Sigma^0})$ First measurement

Mode	$N_{ m sig}^{ m UL}$	ε (%)	$\mathcal{B}^{\mathrm{UL}}$
Λe^+	5.6	31.11 ± 0.14	1.1×10^{-6}
$ar{\Lambda} e^+$	3.4	31.18 ± 0.10	6.5×10^{-7}
$\Sigma^0 e^+$	4.5	16.31 ± 0.07	1.7×10^{-6}
$ar{\Sigma}^0 e^+$	3.5	16.40 ± 0.07	1.3×10^{-6}

BNV-LNV Processes

- 2.93 fb⁻¹ @ 3,773 GeV
- Decay chain e⁺e⁻ → D⁰D⁰, D⁰ → pe⁻+c.c.
 D⁰ → K⁺π⁻, K⁺π⁻π⁰, K⁺π⁻π⁻π⁺
- \cdot X and Y heavy hypothetical gauge bosons
- Double-Tag method
- Full reconstruction of signal modes
- Energy difference: $\Delta E = E_{DObar} E_{beam}$ Beam constrained mass: $M_{BC} = \sqrt{E_{beam}^2/c^4 - |\vec{p}_{\overline{D}^0}|^2/c^2}$
- Branching fraction: $B_{sig} = \frac{N_{DT}}{N_{ST} \varepsilon_{sig}}$
- Signal: MC shape + double Gaussian Background: Argus function

Single-Tag fit

production mechanism

ū

BESTT

D⁰ -> pe⁻

BNV-LNV Processes

BESIII PRD 105 (2022) 032006

D⁰ -> pe⁻

- Asymmetric shapes from MC studies
- No obvious signal observed
- Upper limits $B_{D^0 \rightarrow pe^+} < 1.2 \bullet 10^{-6}$ and $B_{D^0 \rightarrow pe^-} < 2.2 \bullet 10^{-6}$
- Most stringent constraints, but far from predictions

FCNC-LFV-LNV Processes

- 1.6 fb⁻¹, 2016 dataset (8 TeV)
- 25 charm decays
- SM allowed decays involve FCNC or weak annihilation
- Forbidden in SM at tree level and CKM suppressed
- Dominated by LD tree level contributions
- Regions dominated by resonances in dilepton mass are vetoed when fitting

FCNC $D^+_{(S)} \rightarrow \pi^+ e^+ e^ D^+_{(S)} \rightarrow \pi^+ \mu^+ \mu^ D^+_{(S)} \rightarrow K^+ e^+ e^ D^+_{(S)} \rightarrow K^+ \mu^+ \mu^-$

Resonance dominated $D^+_{(S)} \to \pi^+ \varphi(\mu^+ \mu^-)$ $D^+_{(S)} \to K^+ \varphi(e^+ e^-)$

D⁺(5) -> hll

LFV, LFV & LNV

$$D_{(S)}^{+} \rightarrow \pi^{+}\mu^{\pm}e^{\mp}$$

$$D_{(S)}^{+} \rightarrow K^{+}\mu^{\pm}e^{\mp}$$

$$D_{(S)}^{+} \rightarrow K^{-}\mu^{+}e^{+}$$

$$D_{(S)}^{+} \rightarrow \pi^{-}\mu^{+}e^{+}$$

$$D_{(S)}^{+} \rightarrow \pi^{-}e^{+}e^{+}$$

$$D_{(S)}^{+} \rightarrow \pi^{-}\mu^{+}\mu^{+}$$

$$D^{+} \rightarrow K^{-}e^{+}e^{+}$$

$$D^{+} \rightarrow K^{-}\mu^{+}\mu^{+}$$

FCNC-LFV-LNV Processes

Normalization with $D^+_{(S)} \rightarrow \pi^+ \varphi(l^+l^-)$ $D^+_{(S)} \rightarrow hll$

Signal: double Gaussian

Background: exponential (muons) or third order Chebyshev polynomial (electrons)

FCNC-LFV-LNV Processes

Results consistent with background only hypothesis

World's best limits for 23 decays

D⁺(5) -> hll

25

	Branchi	Improvement				
Decay	D)+	D	s^+	Improvement	
	$90\%~{ m CL}$	$95\%~{\rm CL}$	$90\%~{ m CL}$	$95\%~{\rm CL}$	D^+	D_s^+
$D^+_{(s)} \rightarrow \pi^+ \mu^+ \mu^-$	67	74	180	210	1.1	2.3
$D^{+}_{(s)} \rightarrow \pi^{-}\mu^{+}\mu^{+}$	14	16	86	96	1.6	1.4
$D^{+}_{(s)} \rightarrow K^{+} \mu^{+} \mu^{-}$	54	61	140	160	79.0	150.0
$D^{(+)}_{(s)} \rightarrow K^- \mu^+ \mu^+$	-	-	26	30	-	500.0
$D^{(+)}_{(s)} \rightarrow \pi^+ e^+ \mu^-$	210	230	1100	1200	14.0	11.0
$D^{(+)}_{(s)} \rightarrow \pi^+ \mu^+ e^-$	220	220	940	1100	16.0	21.0
$D^{(+)}_{(s)} \rightarrow \pi^- \mu^+ e^+$	130	150	630	710	16.0	13.0
$D^{(+)}_{(s)} \rightarrow K^+ e^+ \mu^-$	75	83	790	880	16.0	18.0
$D^{(+)}_{(s)} \rightarrow K^+ \mu^+ e^-$	100	110	560	640	28.0	17.0
$D^{(+)}_{(s)} \rightarrow K^- \mu^+ e^+$	-	-	260	320	-	23.0
$D^{(+)}_{(s)} \rightarrow \pi^+ e^+ e^-$	1600	1800	5500	6400	0.7	2.3
$D^{(+)}_{(s)} \rightarrow \pi^- e^+ e^+$	530	600	1400	1600	2.1	3.0
$D^{(+)}_{(s)} \rightarrow K^+ e^+ e^-$	850	1000	4900	5500	1.2	0.8
$D^{\dot{+}'}_{(s)} {\rightarrow} K^- e^+ e^+$	-	-	770	840	-	6.7

LNV-LFV Processes

- 468 fb⁻¹ @ Y(4S)
- 39 fb⁻¹ "off peak" (40 MeV below Y(45))

D^o -> hhll

LFV

- Decay chain $e^+e^- \rightarrow c\overline{c}$, $D^{*+} \rightarrow D^0\pi^+$
- 12 decay modes: D⁰ -> hh'l+l+, hh'l+lh and h' = K or π
- 3 normalization modes $D^{0} \rightarrow K^{-}\pi^{+}\pi^{-}, K^{-}K^{+}\pi^{+}\pi^{-}, \pi^{-}\pi^{+}\pi^{+}\pi^{-}$
- Full reconstruction of signal modes
- Maximum likelyhood fit to $\Delta m = m(D^{*+}) m(D^0)$
- Branching fraction: $\mathcal{B}_{sig} = \frac{N_{sig}}{N_{norm}} \frac{\epsilon_{norm}}{\epsilon_{sig}} \frac{\mathcal{L}_{norm}}{\mathcal{L}_{sig}} \mathcal{B}_{norm}$
- Signal: Cruijff function Background: Argus function

LNV-LFV Processes

D⁰ -> hhll

- No signal found
- Upper limits calculated at 90% confidence level using Feldman-Cousins method
- 1-3 order of magnitude more stringent constraints

				${\mathcal B}$ 90% U.L. (×10^-7)	
Decay mode $D^0 \rightarrow$	$N_{\rm sig}$ (candidates)	$\epsilon_{\rm sig}$ (%)	$\mathcal{B}~(imes 10^{-7})$	BABAR	Previous
$\pi^{-}\pi^{-}e^{+}e^{+}$	$0.22 \pm 3.15 \pm 0.54$	4.38 ± 0.05	$0.27 \pm 3.90 \pm 0.67$	9.1	1120
$\pi^-\pi^-\mu^+\mu^+$	$6.69 \pm 4.88 \pm 0.80$	4.91 ± 0.05	$7.40 \pm 5.40 \pm 0.91$	15.2	290
$\pi^{-}\pi^{-}e^{+}\mu^{+}$	$12.42 \pm 5.30 \pm 1.45$	4.38 ± 0.05	$15.41 \pm 6.59 \pm 1.85$	30.6	790
$\pi^{-}\pi^{+}e^{\pm}\mu^{\mp}$	$1.37 \pm 6.15 \pm 1.28$	4.79 ± 0.06	$1.55 \pm 6.97 \pm 1.45$	17.1	150
$K^-\pi^-e^+e^+$	$-0.23 \pm 0.97 \pm 1.28$	3.19 ± 0.05	$-0.38 \pm 1.60 \pm 2.11$	5.0	28 [21]
$K^-\pi^-\mu^+\mu^+$	$-0.03 \pm 2.10 \pm 0.40$	3.30 ± 0.05	$-0.05 \pm 3.34 \pm 0.64$	5.3	3900
$K^-\pi^-e^+\mu^+$	$3.87 \pm 3.96 \pm 2.36$	3.48 ± 0.04	$5.84 \pm 5.97 \pm 3.56$	21.0	2180
$K^{-}\pi^{+}e^{\pm}\mu^{\mp}$	$2.52 \pm 4.60 \pm 1.35$	3.65 ± 0.05	$3.62 \pm 6.61 \pm 1.95$	19.0	5530
$K^-K^-e^+e^+$	$0.30 \pm 1.08 \pm 0.41$	3.25 ± 0.04	$0.43 \pm 1.54 \pm 0.58$	3.4	1520
$K^-K^-\mu^+\mu^+$	$-1.09 \pm 1.29 \pm 0.42$	6.21 ± 0.06	$-0.81 \pm 0.96 \pm 0.32$	1.0	940
$K^{-}K^{-}e^{+}\mu^{+}$	$1.93 \pm 1.92 \pm 0.83$	4.63 ± 0.05	$1.93 \pm 1.93 \pm 0.84$	5.8	570
$K^-K^+e^{\pm}\mu^{\mp}$	$4.09 \pm 3.00 \pm 1.59$	4.83 ± 0.05	$3.93 \pm 2.89 \pm 1.45$	10.0	1800

Search for Rare Charm Decays at Belle II

Belle II will search for rare or forbidden charm decays, especially those with *neutrals* or *missing energy* in the final state, for example:

- ► $D^0 \rightarrow \gamma \gamma$, $c \rightarrow u$ FCNC unique to Belle II
 - current UL $\mathscr{B}(D^0 \rightarrow \gamma \gamma) < 8.5 \times 10^{-7}$ at 90% CL (<u>Belle, PRD 93 051102</u>) is 2 orders of magnitudes higher than SM predictions (<u>PRD 64 074008</u>, <u>PRD 66 014009</u>)
 - estimated UL at Belle II $\mathscr{B}(D^0 \to \gamma \gamma) < 1.5 \times 10^{-7}$ at 90% CL (with 50 ab⁻¹)
- → $D \rightarrow h \nu \bar{\nu}, \Lambda_c^+ \rightarrow p \nu \bar{\nu}$, strongly GIM-suppressed in the SM

 - can be used with any type of missing energy (neutrinos, dark matter, axions, other non-SM particles)

BESIII Prospects

White Paper CPC 44 (2020) 040001

1	Ω	-6
<u>т</u>	U	-

10-6

Decay	Upper limit	Experiment	Year	Ref.	BESIII Expected
$D^0 \to \pi^0 e^+ e^-$	0.4	BESIII	2018	[35]	0.1
$D^0 \rightarrow \eta e^+ e^-$	0.3	BESIII	2018	[35]	0.1
$D^0 \rightarrow \omega e^+ e^-$	0.6	BESIII	2018	[35]	0.2
$D^0 \rightarrow K^0_S e^+ e^-$	1.2	BESIII	2018	[35]	0.5
$D^0 \rightarrow \rho e^+ e^-$	124.0	E791	2001	[36]	0.5
$D^0 \rightarrow \phi e^+ e^-$	59.0	E791	2001	[36]	0.5
$D^0 ightarrow ar{K}^{*0} e^+ e^-$	47.0	E791	2001		0.5
$D^0 \to \pi^+\pi^- e^+ e^-$	0.7	BESIII	2018	20 fb-1	0.3
$D^0 \rightarrow K^+ K^- e^+ e^-$	1.1	BESIII	2018	2 3.773 GeV	0.4
$D^0 \to K^- \pi^+ e^+ e^-$	4.1	BESIII	2018	[35]	1.6
$D^+ \rightarrow \pi^+ e^+ e^-$	1.1	BaBar	2011	[37]	0.12
$D^+ \to K^+ e^+ e^-$	1.0	BaBar	2011	[37]	0.46
$D^+ \to \pi^+ \pi^0 e^+ e^-$	1.4	BESIII	2018	[35]	0.5
$D^+ \to \pi^+ K^0_S e^+ e^-$	2.6	BESIII	2018	[35]	1.0
$D^+ \rightarrow K^0_S K^+ e^+ e^-$	1.1	BESIII	2018	[35]	0.4
$D^+ \to K^+ \pi^0 e^+ e^-$	1.5	BESIII	2018	[35]	0.6
$D_s^+ ightarrow \pi^+ e^+ e^-$	13.0	BaBar	²⁰¹ 6 ft	b ⁻¹ @ 4,18 GeV	70.0
$D_s^+ \to K^+ e^+ e^-$	3.7	BaBar	201	12/1	1.7

Summary

- Rare decays are a great tool for New Physics studies
- Rare charm decays

up-type quark dynamics complementary to strange and beauty results

- Limits are still above SM predictions
- New Physics effects have not been found yet
- New results expected from BESIII, BelleII, LHCb, and Super Tau-Charm Factories