FPCP2022 at the University of Mississippi 23 May 2022

Anomalies in charged-current B decays

Ryoutaro Watanabe

PRIN "The consequences of flavor"

RD(*): experiments

Experiment	R_{D^*}	R_D	Correlation
BaBar (2012)	$0.332 \pm 0.024 \pm 0.018$	$0.440 \pm 0.058 \pm 0.042$	-0.31
Belle (2015)	$0.293 \pm 0.038 \pm 0.015$	$0.375 \pm 0.064 \pm 0.026$	-0.50
Belle (2016)	$0.270 \pm 0.035^{+0.028}_{-0.025}$		
Belle (2019)	$0.283 \pm 0.018 \pm 0.014$	$0.307 \pm 0.037 \pm 0.016$	-0.52
LHCb (2015)	$0.336 \pm 0.027 \pm 0.030$		_
LHCb (2017)	$0.280 \pm 0.018 \pm 0.029$		
Average	0.338 ± 0.030	0.297 ± 0.013	-0.39

Latest results: Belle 2019 / LHCb run 1 2018 → no update in 3 years Waiting lists:

CMS with "B-parking" / Belle II / LHCb run2 - afternoon talk(?)

RD(*): usual interpretations

NP possibilities: $\mathcal{L}_X = 2\sqrt{2}G_F V_{cb} C_X^{\ell} (\bar{c} \Gamma b) (\bar{\ell} \Gamma' \nu)$

- Solutions to the RD(*) anomaly

 $C_{\text{VLL}}^{\tau} \approx 0.09 \qquad C_{\text{VRL}}^{\tau} \approx 0.42i \qquad C_{T}^{\tau} \approx 0.15 + i \, 0.19$ $(\bar{c}\gamma^{\mu}P_{L}b)(\bar{\ell}\gamma_{\mu}P_{L}\nu) \qquad (\bar{c}\gamma^{\mu}P_{R}b)(\bar{\ell}\gamma_{\mu}P_{L}\nu) \qquad (\bar{c}\sigma^{\mu\nu}P_{L}b)(\bar{\ell}\sigma_{\mu\nu}P_{L}\nu)$

 $C_{\rm SLL}^{\tau} \approx -0.82 + 0.78i$ Right-handed neutrino scenarios are skipped here: $(\bar{c}P_Lb)(\bar{\ell}P_L\nu)$ 1802.01732, 1804.04135, 1804.04642,
1807.04753, 1811.04496

- Models of the mediator particle

Vector boson (W'): $C_{\text{SM-like}}^{\tau}, C_{\text{VRL}}^{\tau}$

⇒ SU(2) model inevitably includes Z' that is very constrained due to tree-level FCNC

Charged Higgs: $C_{\rm SLL}^{ au}$

→ typical models (type-I, II) do not give desired SLL and so type-III is the last hope

RD(*): usual interpretations

Leptoquarks (LQ): S_1 , R_2 , U_1

 $S_1(\bar{3}, 1, 1/3)$ scalar: $C_{VLL}, C_{SLL} = -4C_T \approx 0.13$

- ➡ VLL & SLL-T type couplings are independent and both has the solution
- ➡ S1-S3 mixture was discussed for RK

 $R_2(3,2,7/6)$ scalar: $C_{SLL} = +4C_T \approx 0.40 i$

→ could be related to GUT and neutrino mass generation
1701.08322

 $U_1(3,1,2/3)$ vector: C_{VLL} , C_{SLL} 1709.00692, 1808.07492,

1812.01603, 2103.11889

1703 09226

- ➡ VLL and SLL are independent apart from UV completion
- ➡ Famous Pati-Salam UV induces Z' that has to be managed (model dependent)
- → Another UV from U(2) flavor symmetry gives $C_{SLL} = -2 e^{I\phi} C_{VLL}$

This talk:

How are related observables to RD(*) & impacts on these solutions?

Content

- SM predictions

- NP in the light lepton modes?

- Flavor signals: B_c , Λ_b , (Tau polarizations)

- Collider signals: Tau + missing

SM predictions (Form Factors)

BGL parameterization:

+ HFLAV (Spring2019)

General HQET parameterization:

+ EPJC80(2020)74 [3/2/1 model] + JHEP08(2020)006 [3/2/1 model] + JHEP08(2020)006 [2/1/0 model]

Why different?:

- FF shape fit is still unstable
 - ➡ We need more theory calculation
- Lattice was available only for $\mathbf{B} \rightarrow \mathbf{D}$

New lattice calculations for $B \rightarrow D^*$:

Plot from Danny van Dyk

- JLQCD, FNAL/MILC, HPQCD results will be available
- can be compared with the current FF fit of blue band
- This plot is good while others look inconsistent

(Still preliminaries and so I don't show much)

NP in the light lepton modes?

(1) Simultaneous fit of FF + Vcb + NP in $B
ightarrow D^{(*)} \mu
u$, $D^{(*)} e
u$

2004.10208 (RW)

- assuming LFU type NP in e/µ $C_X^e = C_X^\mu$
- taking Belle full angular data (2017,2018) & all available theory
 - ➡ processes usually used to measure Vcb
- NP can be hidden behind the Vcb measurement
 - ightarrow possible size is < 5% of the "SM size" $\equiv 2\sqrt{2}G_FV_{cb}$
- Impact on RD(*), NP in denominator, is mild
 - ➡ RD* increases while RD decreases in case of VRL type NP

NP in the light lepton modes?

(1) Simultaneous fit of FF + Vcb + NP in $B \rightarrow D^{(*)} \mu \nu$, $D^{(*)} e \nu$

2004.10208 (RW)

- assuming LFU type NP in e/µ $C_X^e = C_X^\mu$
- taking Belle full angular data (2017,2018) & all available theory
 - ➡ processes usually used to measure Vcb
- NP can be hidden behind the Vcb measurement
 - ightarrow possible size is < 5% of the "SM size" $\equiv 2\sqrt{2}G_FV_{cb}$
- Impact on RD(*), NP in denominator, is mild
 - ➡ RD* increases while RD decreases in case of VRL type NP

NP in the light lepton modes?

(1) Simultaneous fit of FF + Vcb + NP in $B
ightarrow D^{(*)} \mu
u$, $D^{(*)} e
u$

2004.10208 (RW)

- assuming LFU type NP in e/µ $C_X^e = C_X^\mu$
- taking Belle full angular data (2017,2018) & all available theory
 - ➡ processes usually used to measure Vcb
- NP can be hidden behind the Vcb measurement
 - ightarrow possible size is < 5% of the "SM size" $\equiv 2\sqrt{2}G_FV_{cb}$
- Impact on RD(*), NP in denominator, is mild
 - ➡ RD* increases while RD decreases in case of VRL type NP

(2) New anomaly in angular obs. $\Delta A_{\rm FB} = A_{\rm FB}(D^*\mu\nu) - A_{\rm FB}(D^*e\nu)$

2104.02094, 2203.07189

- using Belle 2018 data, angular asymmetries can be constructed
- "anomaly" was observed in the FB asymmetry between e/μ
 - ⇒ Single NP operators difficult / Tuned NP couplings needed
 - \Rightarrow Impact on RD(*) is very limited since Br(e/µ) = 1 ± 0.01

(1) Bc lifetime

excluded the scalar NP solution (SLL):

- Difference in experiment/theory is room for NP contribution hep-ph/9601249, 1611.06676

 $[au_{B_c}^{
m exp} \approx 0.5
m ps]
m vs. [0.4
m ps < au_{B_c}^{
m th} < 0.7
m ps] \quad \Rightarrow \quad
m Br(B_c \rightarrow
m induced
m by NP) < 30\%$

- The present calculation (OPE) is sensitive to charm mass input
 - \Rightarrow 1811.09603 pointed out a conservative bound should be < 60%
 - ⇒ 2105.02988 provides update concerning charm mass: th. could reach <1.0ps (<50%)</p>
 - ➡ theory calculation is not conclusive, need further update...

0.34

2201.06565

- This update significantly affects the SLL scenario
 - ➡ Scalar type solution revived, but on the edge!
 - ➡ Type-III charged Higgs has to be revisited now!
 - ➡ Good news for several LQ scenarios as well

(2) Bc decay

The "R" observable for Bc: $R_{J/\psi} = \mathcal{B}(B_c \to J/\psi \tau \nu) / \mathcal{B}(B_c \to J/\psi \mu \nu)$ 1711.05623

LHCb (2017): $0.71 \pm 0.17 \pm 0.18 \Leftrightarrow$ 35%

Update is planned in the LHCb roadmap

➡ error could go into 8% in 5 years

- Sufficiently crucial for the RD(*) anomaly

⇒ NP prediction on RJψ can be tested

(2) Bc decay

The "R" observable for BC: $R_{J/\psi} = \mathcal{B}(B_c \to J/\psi \tau \nu) / \mathcal{B}(B_c \to J/\psi \mu \nu)$ 1711.05623

LHCb (2017): $0.71 \pm 0.17 \pm 0.18 \Leftrightarrow 35\%$

— Update is planned in the LHCb roadmap

➡ error could go into 8% in 5 years

— Sufficiently crucial for the RD(*) anomaly

 \Rightarrow NP prediction on RJ ψ can be tested

SM (2017): 0.28 ± 0.05	1709.08644
SM (2019): 0.24 ± 0.01	1901.08368
SM (2022): 0.258 ± 0.004	2204.04357

- FF updated:

2007.06957

→ QCD (2017)/ SR (2019) / lattice (2020)

➡ deviations affected the SM value

— NP prediction from the RD(*) solution:

- → ex) VLL solution predicts 0.28-0.29
- ⇒ Summary given later

(3) Ab decay

Another R proposal from b-baryon: $R_{\Lambda_c} = \mathcal{B}(\Lambda_b \to \Lambda_c \, \tau \, \nu) \, \Big/ \, \mathcal{B}(\Lambda_b \to \Lambda_c \, \ell \, \nu)$

- light lepton modes were measured by DELPHI/CDF/LHCb since 2004

— the first result for tau together with R was reported by LHCb in this year! 2201.03497

LHCb (2022): $0.242 \pm 0.026 \pm 0.04 \pm 0.059 \iff SM (2018): 0.324 \pm 0.004$

(3) Ab decay

Another R proposal from b-baryon: $R_{\Lambda_c} = \mathcal{B}(\Lambda_b \to \Lambda_c \, \tau \, \nu) \, \Big/ \, \mathcal{B}(\Lambda_b \to \Lambda_c \, \ell \, \nu)$

- light lepton modes were measured by DELPHI/CDF/LHCb since 2004

— the first result for tau together with R was reported by LHCb in this year!
 2201.03497

LHCb (2022): $0.242 \pm 0.026 \pm 0.04 \pm 0.059 \Leftrightarrow SM (2018): 0.324 \pm 0.004$

Heavy Quark Symmetry ensures sum rule: $\frac{R_{\Lambda_c}}{R_{\Lambda}^{SM}} = 0.28 \frac{R_D}{R_D^{SM}} + 0.72 \frac{R_{D^*}}{R_{D^*}^{SM}} + \delta$

1811.09603, 1905.08253

- **\delta=0** holds under any NP existence as long as $|C_T| \ll 1$

→ Recall the T solution: $|C_T| \approx |0.15 + i\,0.19| = 0.24 \Rightarrow \delta = -0.03$

— measured RD(*) provides model-independent fit: $R_{\Lambda_c}^{
m fit}=0.380\pm0.013\pm0.005$

- ➡ is another index to test the anomaly
- ➡ IOW, this R cannot distinguish NP types but is a unique value for every NP solution
- \Rightarrow For now, the measured RAc is not consistent with the RD(*) anomaly

NP prediction summary:

— NP solutions for RD(*) anomaly predict distinct signals

- ➡ RAc are in the same range as explained and has to be tested
- \Rightarrow RJ ψ has a clear correlation with RAc for the VLL/VRL solution (red/gray)
- → Tau spin polarizations could identify T/SLL/LQ solution (blue/yellow/cyan)
- Current experimental measurements are out of range in this plot

W boson resonance:

- has been observed with missing transverse mass
- its tail can be interpreted as NP contribution responsible for the RD(*) anomaly
- minimal NP process is $bc \rightarrow \tau v$
 - → W' is severely constrained: < 2TeV excluded (bc PDF suppressed) / < 5TeV (SSM)
 - ➡ EFT based analysis is also available and gives very crucial bound

1811.07920

- competitive with the NP solutions that require large WCs:

$$\begin{split} |C_{\rm VLL}^{\rm LHC-EFT}| &< 0.32 \quad \Leftrightarrow \quad C_{\rm VLL}^{R_D(*)} \approx 0.09 \\ |C_{\rm VRL}^{\rm LHC-EFT}| &< 0.33 \quad \Leftrightarrow \quad C_{\rm VRL}^{R_D(*)} \approx 0.42 \, i \\ |C_T^{\rm LHC-EFT}| &< 0.20 \quad \Leftrightarrow \quad |C_T^{R_D(*)}| \approx |0.15 + i \, 0.19| = 0.24 \\ |C_{\rm SLL}^{\rm LHC-EFT}| &< 0.32 \quad \Leftrightarrow \quad |C_{\rm SLL}^{R_D(*)}| \approx |-0.82 + i \, 0.78| = 1.13 \end{split}$$

- Charged Higgs is very excluded, but has an exception
 - ➡ tail pT < 500GeV is less sensitive to NP signal</p>
 - ➡ mass window 180GeV < mH < 400GeV is not accessible</p>

t-channel case:

- EFT approximation is not good at high-mT
 - ➡ if NP mass is close to mT bin ~ 1TeV applicable for bound
 - → In particular, it overestimates the signal for t-channel
 - → Large t(<0) generates large mT and reduces the contribution

$$- \text{ ex) } \mathcal{L}_U = h_U^{ij} \left(\bar{q}_L^i \gamma^\mu \ell_L^j \right) U_\mu + \text{h.c.} \quad \Rightarrow \quad \frac{h_U^{b\tau} \cdot h_U^{c\nu}}{t - m_{\text{LQ}}^2} \neq - \frac{h_U^{b\tau} \cdot h_U^{c\nu}}{m_{\text{LQ}}^2} \equiv C_{\text{VLL}}$$

Proper bound for t-channel NP:

- → 2TeV LQ: EFT bound is 40~100% overestimated
- ⇒ 5TeV LQ: 10~20% overestimated
- ➡ T solution is still viable in the case of LQ type

 $|C_T^{ ext{LHC-LQ}}| < 0.42 \ \Leftrightarrow \ |C_T^{R_D^{(*)}}| pprox |0.15 + i\, 0.19| = 0.24$

Future capability:

⇒ 3ab⁻¹ LHC reaches all the solutions except VLL

 $|C_{\mathrm{VLL}}^{\mathrm{LHC \ 3ab^{-1}}}| < 0.15 \quad \Leftrightarrow \quad C_{\mathrm{VLL}}^{R_{D^{(*)}}} pprox 0.09$

proposal of improvement:

— Requiring additional b-jet greatly reduces the SM background 2008.07541

- \Rightarrow comes from $gq \rightarrow b \ell \nu$ (q = u, c) suppressed by |Vqb|^2 in the SM
- ➡ simulation shows +b search could improve the LHC bound by ~50%
- → 3ab⁻¹ LHC could reach the VLL solution: $|C_{VLL}^{3ab^{-1}+b}| \lesssim 0.1$

proposal of improvement:

— Requiring additional b-jet greatly reduces the SM background 2008.07541

- \Rightarrow comes from $gq \rightarrow b \ell \nu$ (q = u, c) suppressed by |Vqb|^2 in the SM
- ➡ simulation shows +b search could improve the LHC bound by ~50%
- → 3ab⁻¹ LHC could reach the VLL solution: $|C_{VLL}^{3ab^{-1}} + b| \lesssim 0.1$
- тv+b search can also access mH < 400GeV (out of range for тv search)
 - suppressing trigger rate could reach up to 180GeV
 - simulation shows 139fb^-1 data is sufficient to test the SLL solution for RD(*)

Summary

- SM predictions

Upcoming lattice form factor calculations will bring impacts on the SM values

- NP in the light lepton modes?

W NP hidden in the Vcb measurement is possible (< 5%), but impact on RD(*) is limited

New anomaly in angular asymmetry for e/µ is found, but nothing to do with RD(*)

- Flavor signals: B_c, Λ_b, (Tau polarizations)

W RAc has model-independent sum rule with RD(*), and gives another index for the anomaly

V RJψ will be updated both from th./exp., and has potential to identify the RD(*) solution

— Collider signals: Tau + missing

W High-pT (>500GeV) tail is sensitive to NP responsible for RD(*), and already competitive

EFT bounds already excluded some RD(*) solutions, while t-channel bounds more milder

Additional b-jet tag will improve the collider bound and reach 10% precision

Missing in this talk

Right-handed neutrino scenarios Model construction issues Interplay with anomalies in neutral-current B decay Interplay with LFV

(Leptoquark setup)

Prepare LQ interactions that generate 4 Fermi current:

$$\begin{split} \mathcal{L}_{[V_1]} &= \boldsymbol{h}^{ij} \left(\bar{q}_L^i \gamma^{\mu} \ell_L^j \right) U_{\mu} + \text{h.c.} \implies C_{V_1} \\ \mathcal{L}_{[V_2]} &= \left(\boldsymbol{h}^{ij} \bar{u}_R^i \nu_L^j + \boldsymbol{h}'^{ij} \bar{d}_R^i \ell_L^j \right) R_2^{2/3} + \text{h.c.} \implies C_{V_2} \\ \mathcal{L}_{[S_1]} &= \left(\boldsymbol{h}^{ij} \bar{u}_L^i \gamma^{\mu} \nu_L^j + \boldsymbol{h}'^{ij} \bar{d}_R^i \gamma^{\mu} \ell_R^j \right) U_{\mu} + \text{h.c.} \implies C_{S_1} \\ \vdots \end{split}$$

- Every given LQ mass, the coupling h is constrained from LHC data - The result is represented as the WC bound: $2\sqrt{2}G_FV_{cb}C_X = N_X \frac{h_1h_2}{M_{LQ}^2}$

(Amplitude)

$$\begin{split} |\mathcal{M}_{V_{1}}^{\mathrm{LQ}}|^{2} &= 4 \, (h_{\mathrm{LQ}}^{21} h_{\mathrm{LQ}}^{31*})^{2} E^{4} \hat{C}_{t}^{2} (1 - \cos \theta)^{2}, \\ |\mathcal{M}_{V_{2}}^{\mathrm{LQ}}|^{2} &= (h_{\mathrm{LQ}_{1}}^{21} h_{\mathrm{LQ}_{2}}^{31*})^{2} E^{4} \hat{C}_{t}^{2} (1 + \cos \theta)^{2}, \\ |\mathcal{M}_{S_{1}}^{\mathrm{LQ}}|^{2} &= 16 \, (h_{\mathrm{LQ}_{1}}^{21} h_{\mathrm{LQ}_{2}}^{31*})^{2} E^{4} \hat{C}_{t}^{2}, \\ |\mathcal{M}_{S_{2}/T}^{\mathrm{LQ}}|^{2} &= (\tilde{h}_{\mathrm{LQ}_{2}}^{12*} \tilde{h}_{\mathrm{LQ}_{1}}^{13})^{2} E^{4} \left[\hat{C}_{t}^{2} (1 + \cos \theta)^{2} \right. \\ &+ \hat{C}_{u}^{2} (1 - \cos \theta)^{2} \pm 2 \hat{C}_{t} \hat{C}_{u} (1 - \cos^{2} \theta) \right] \end{split}$$

where \hat{C}_t and \hat{C}_u involve the LQ propagator written as

$$\hat{C}_{t} = \left[2E^{2}(1+\cos\theta) + M_{\rm NP}^{2}\right]^{-1},\\ \hat{C}_{u} = \left[2E^{2}(1-\cos\theta) + M_{\rm NP}^{2}\right]^{-1}.$$

EFT:
$$\hat{C}_t = \hat{C}_u = 1/M_{
m NP}^2$$

(Leptoquark setup)

Prepare LQ interactions that generate 4 Fermi current:

$$\begin{split} \mathcal{L}_{[V_1]} &= \boldsymbol{h}^{ij} \left(\bar{q}_L^i \gamma^{\mu} \ell_L^j \right) U_{\mu} + \text{h.c.} \implies C_{V_1} \\ \mathcal{L}_{[V_2]} &= \left(\boldsymbol{h}^{ij} \bar{u}_R^i \nu_L^j + \boldsymbol{h}'^{ij} \bar{d}_R^i \ell_L^j \right) R_2^{2/3} + \text{h.c.} \implies C_{V_2} \\ \mathcal{L}_{[S_1]} &= \left(\boldsymbol{h}^{ij} \bar{u}_L^i \gamma^{\mu} \nu_L^j + \boldsymbol{h}'^{ij} \bar{d}_R^i \gamma^{\mu} \ell_R^j \right) U_{\mu} + \text{h.c.} \implies C_{S_1} \\ \vdots \end{split}$$

— Every given LQ mass, the coupling h is constrained from LHC data
h, h

— The result is represented as the WC bound: $2\sqrt{2}G_F V_{cb}C_X = N_X \frac{h_1 h_2}{M_{\rm LQ}^2}$

(Numerical Analysis)

- Signal simulated as usual Madgraph5, PYTHIA8, DELPHES3
- Selection cuts following ATLAS (light lepton) / CMS (tau) ATLAS (2019), CMS (2019)
- Observed # in distribution of mT bin ~ 1TeV is analyzed to compute the bound

The tau case:

0.5 $\tau^{\pm} + \text{missing}$ 0.4 $35.9 \text{fb}^{-1}(\text{CMS})$ 0.3 0.3 0.3 0.1 0.1 0.1 0.1

EFT) $|C_T|_{LHC} < 0.20 (95\% CL)$ $\downarrow \qquad \qquad \leftrightarrow \ |C_T|_{R_{D^{(*)}}} \approx |0.15 + i \, 0.19| = 0.24$ LQ) $|C_T|_{LHC} < 0.42 (95\% CL)$ (Summary) 2TeV LQ: EFT bound is 40~100% overestimated 5TeV LQ: 10~20% overestimated

Impact on Flavor (RD(*) anomaly):

Result 2/2

Mediator (LQ) mass dependence:

Result 1/2

S2

- V1 $2\sqrt{2}G_F V_{cb} \Big[C_{V_1} (\bar{c}\gamma^{\mu}P_L b) (\bar{\ell}\gamma_{\mu}P_L \nu) + C_{V_2} (\bar{c}\gamma^{\mu}P_R b) (\bar{\ell}\gamma_{\mu}P_L \nu) + C_{S_1} (\bar{c}P_R b) (\bar{\ell}P_L \nu) \Big]$
 - $+C_{S_2}(\bar{c}P_Lb)(\bar{\ell}P_L\nu)$

 $+ C_T (\bar{c} \sigma^{\mu
u} P_L b) (\bar{\ell} \sigma_{\mu
u} P_L
u) \Big]$

Impact on Flavor (Vcb+NP fit):

+ b-jet tag

- Requiring additional b-jet greatly reduces the SM background

$$\left|\ell^{\pm}
u + b
ight|_{\mathrm{SM}} \; \; \Rightarrow \; \; gq o b\ell
u \; \; (q = u, c) \;\; \Rightarrow \;\; |V_{ub,cb}|^2 \; \mathrm{suppression}$$

Improvement 1: stronger bound is simply expected

— can look into detail of the U1-LQ model = SM-like vector operator

$$\mathcal{L}_U = h_U^{ij} \left(ar{q}_L^i \gamma^\mu \ell_L^j
ight) U_\mu + ext{h.c.} \qquad C_{V_1} \equiv -rac{h_U^{b au} \cdot h_U^{c
u}}{m_{ ext{LQ}}^2}, \,\,\, ext{but indeed } h_U^{c
u} = h_U^{s\ell}$$

 $\left.\ell^{\pm}\nu\right|_{U_1-\mathrm{LQ}} \ \Rightarrow \ cb, cs \to \ell\nu \ \Rightarrow \ \mathrm{The} \ C_{V_1} \ \mathrm{bound} \ \mathrm{is} \ \mathrm{valid} \ \mathrm{only} \ \mathrm{if} \ h_U^{b au} \gg h_U^{c
u} \ \mathrm{for} \ U_1-\mathrm{LQ}$

 $\left.\ell^{\pm}\nu+b\right|_{U_1-\mathrm{LQ}} \hspace{0.2cm} \Rightarrow \hspace{0.2cm} cg \rightarrow b\ell \nu \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \mathrm{no} \hspace{0.2cm} s \hspace{0.2cm} \mathrm{quark}, \hspace{0.2cm} (\mathrm{but \ could \ be \ mis-tagged})$

Improvement 2: complementary bound on the two couplings

+ b-jet tag

2111.104748

(BG/Signal events generated & simulated: details skipped)

Observations:

- +b search improves the bound by $\sim 50\%$
- +b search at HL_LHC can achieve Cx~0.1, i.e. 10% NP effect
- Given the LQ mass, the two couplings (not combination) are constrained

FF parameterization

CLN

Caprini, Lellouch, Neubert (1997)

- "Traditional" parameterization based on HQET
- Form Factors are approximated and related with each other

Cons: parameterization is valid only up to $1/m_Q$ correction

Comparison: inclusive decay has no $(1/m_Q)^1$ but starts from $(1/m_Q)^2$

BGL

Boyd, Grinstein, Lebed (1997)

- "General" parameterization with minimum requirement
- Each Form Factor involves independent parameters

Cons: FFs in New Physics involve new unknown parameters

FF parameterization

√ "general HQET" Jung. Straub (2018), Bordone, Jung. Dyk (2019)

- general HQET based parameterization

— includes higher order corrections at the cost of larger parameter set

Pros: NNLO could be competitive to NLO because $(\Lambda/m_c)^2 \sim (\Lambda/m_b)^1$

Pros: Including NNLO is also a fair comparison with inclusive mode

✓ Modeling

HQET property:one LO / three NLO / six NNLO Isgur-Wise functionsParameterization:ex) $\xi(w) \equiv \sum_{n=0}^{N_{LO}} a_{\xi}^{(n)} z^n$ Truncation order: arbitraryTwo proposed modelings for the truncation orders:* CLN is naively (3/0/-)

 $(N_{\rm LO}/N_{\rm NLO}/N_{\rm NNLO}) = \begin{cases} (3/2/1) & \rightarrow 23 \text{ parameters!} \\ (2/1/0) & \rightarrow 13 \text{ parameters!} \end{cases}$

FF+Vcb+NP fit

To summarize:

- Data points to be taken in our fit analysis
 - FF constraints [7+33+8+UB] + Distribution data [10+40+80] + Br [2]
 - Total: 180 data points
- Parameters to be fitted
 - FF model [23 or 13] + Vcb [1] (+ Cx [1] for NP)
 - Our fit: 14 ~ 25 parameters applying Bayesian MCMC

SM result → Consistency check for our fit

