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Charm CP Violation:
New unique gate to flavor structure of up-type quarks.

[LHCb 1903.08726, HFLAV 2021]

adir
CP(D0 → K+K−) − adir

CP(D0 → π+π−)

= (−0.161 ± 0.028)% .

Please note:
This is my personal list, so the
overview is biased towards my
own work.
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Signs of a new era? Anomalies in Flavor Physics

There are several anomalies. We are not sure what is behind them.

Semileptonic and rare B decay data: Lepton-flavor non-universality?

CP is not a fundamental symmetry of nature.

Therefore, generically, BSM physics will also violate CP.

If anomalies confirmed: Expect deviations from SM also in CPV.
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Direct Charm CP Violation
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Direct CP Violation is an Interference Effect

adir
CP(f ) ≡

|A(D0 → f )|2 − |A(D
0
→ f )|2

|A(D0 → f )|2 + |A(D
0
→ f )|2

≈ 2(rCKM sinφCKM) (rQCD sin δQCD) .

f = CP-eigenstate.

The decay amplitude:

A = 1 + rCKM rQCD ei(φCKM+δQCD)

rCKM : real ratio of CKM matrix elements.

φCKM : weak phase.

rQCD : real ratio of hadronic matrix elements.

δQCD : strong phase.
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Where does the interference come from?

D0
V∗cdVud
−→ π+π−

D0 V∗csVus
−→ K+K−

QCD
−→ π+π−

D0
V∗cdVud
−→ π+π−

QCD
−→ K+K−

D0 V∗csVus
−→ K+K−

KK ↔ ππ rescattering into same final state.
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Weak and strong factors

A(D→ ππ→ KK)
A(D→ KK)

=
(
rCKMeiφCKM

) (
rQCDeiδQCD

)
rQCD: ratio of rescattering amplitudes.
δQCD = O(1): strong phase.
rCKM = 1: ratio of CKM factors,

∣∣∣V∗cdVud/(V∗csVus)
∣∣∣

φCKM ≈ 6 · 10−4: deviation from 2 × 2 unitarity.
Prediction

∆adir
CP ∼ 10−3 × rQCD

U-spin decomposition: rQCD = r∆U=0
QCD ≡ A

∆U=0/A∆U=1.
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“∆U = 0 rule”: rQCD ∼ 1 [Grossman StS 1903.10952]

We claim ∆U = 0 follows similar pattern as generalized ∆I = 1/2 rule.

Both due to low energy QCD, rescattering.

“∆I = 1/2 rules” for isospin in P+ → π+π0, P0 → π+π−, P0 → π0π0

Relevant ratio of strong isospin matrix elements:

r∆I=1/2
QCD ≡ A∆I=1/2/A∆I=3/2 Kaon Charm Beauty

Data 22 2.5 1.5

“No QCD” limit
√

2
√

2
√

2

Enhancement O(10) O(1) O(αs)

[D: Franco Mishima Silvestrini 2012, B: Grinstein Pirtskhalava Stone Uttayarat 2014]

Rescattering most important in K decays, less important but still
significant in D decays, and small in B decays.
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Comparison of approaches: What is rQCD?
Data

Assuming the SM, and δQCD = O(1), the data implies r∆U=0
QCD ∼ 1.

Ref. Theory Method/Assumptions r∆U=0
QCD SM/NP

[Grossman StS 1903.10952] Analogy to ∆I = 1/2 rules O(1) SM

Low energy QCD, rescattering is O(1)

[Brod Kagan Zupan 1111.5000] Phenomenological analysis O(1) SM

[Soni 1905.00907, StS Soni 2110.07619] Resonance model O(1) SM

[Petrov Khodjamirian 1706.07780] Light Cone Sum Rules O(αs/π) NP

[Chala Lenz Rusov Scholtz 1903.10490] Resonances in principle incorporable.

What next? Apply methods to ∆I = 1/2 rule in charm!
Reproduction of ∆I = 1/2 crucial for NP case in ∆U = 0.
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The jury is still out: Is it SM or not?

No matter what it is, we learn sth new.

We have a good argument why it is QCD.

Assumption of large rescattering at low energy
agrees with the data.

Loop/Tree = O(1)

Key insight: Charm is not heavy.

Stefan Schacht (Manchester) FPCP Oxford, MS May 2022 11 / 29



ACP Sum Rules: Overconstrain the SM

Challenge for predicting CP asymmetries
New hadronic quantities appear.
These cannot be extracted from B measurements.

Solution
Make up SU(3)F sum rules in which these cancel.

SU(3)F limit sum rules

adir
CP(D0 → π+π−) + adir

CP(D0 → K+K−) = 0 ,

adir
CP(D+s → KSπ

+) + adir
CP(D+ → KSK+) = 0 .

Stefan Schacht (Manchester) FPCP Oxford, MS May 2022 12 / 29



Key Measurements for D→ PP′.

ACP sum rules including breaking effects [Müller Nierste StS 1506.04121]

SM sum rule 1: D0 → K+K− , D0 → π+π− , D0 → π0π0 .

SM sum rule 2: D+ → KSK+ , D+s → KSπ
+ , D+s → K+π0 .

Isospin Analysis [Grossman Kagan Zupan 1204.3557]

Extract ∆I = 1/2 and ∆I = 3/2 MEs from

D0 → π+π−, D+ → π+π0, D0 → π0π0.

adir
CP(D+ → π+π0) = 0. Higher orders < sensitivity.

What next?
Measurements of CP asymmetries in all SCS D→ PP′ decays.

Need sum rules for multi-body decays at higher order in SU(3)F.
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What next? Check dynamical mechanism from data.

D0 V∗cdVud
−→ π+π−

D0 V∗csVus
−→ K+K−

QCD
−→ π+π−

D0
π+

π−

f0
K+

K−

D0
K+

K−

f0
π+

π−

Assumptions [StS and A. Soni, 2110.07619]

Amplitudes to I = 0 states dominated by f0 close to D0 mass.

Amplitudes into I = 1 states relatively suppressed.

Resonance structure can also be incorporated in future LCSR calculations.
[Khodjamirian Petrov 1706.07780]
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Predictions in Scalar Resonance Model
[StS and A. Soni, 2110.07619]

Experimental data

f0 (1790) model
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What next? Study of ∆U = 0 in three-body decays
[Dery Grossman StS Soffer 2101.02560]

A(D0 → π+ρ−) = −λTP1V2 − V∗cbVub RP1V2

A(D0 → π−ρ+) = −λTP2V1 − V∗cbVub RP2V1

Time-integrated CP asym. of 2-body decays give only combinations

|R̃P1V2 | sin(δP1V2) and |R̃P2V1 | sin(δP2V1) ,

but not magnitudes and phases separately.

Three body decay changes 2 things:
We have additional kinematic dependences.
Only in a three-body decay we have interference between
D0 → π+(ρ− → π−π0) and D0 → π−(ρ+ → π+π0).

Extraction of all parameters from time-integrated CP meas.
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Local adir
CP(D0 → π+π−π0) in overlap region of ρ±

[Dery Grossman StS Soffer 2101.02560]
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Numerical example: R̃P1V2 = exp(iπ/2), R̃P2V1 = 1
4 exp(iπ/3)
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Charm Mixing and Indirect CP Violation
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Charm Mixing

Mixing parameters x ≡ ∆m/Γ and y ≡ ∆Γ/(2Γ).
2021: First observation of x , 0 with > 7σ. [LHCb 2106.03744].
Uncertainty of y reduced by a factor two in [LHCb 2110.02350].
|q/p| , 1 would indicate CPV in mixing.
Arg(q/p) , 0 would indicate CPV from interference mixing/decay.
SM: hard to calculate. Qualitative agreement with SM.
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Exclusive Approach: Hadron-Level

ΓD
12 =

∑
n

ρn
〈
D0

∣∣∣∣H∆C=1
eff |n⟩ ⟨n| H∆C=1

eff

∣∣∣D0
〉
,

MD
12 =

∑
n

〈
D0

∣∣∣∣H∆C=2
eff

∣∣∣D0
〉
+ P

∑
n

〈
D0

∣∣∣∣H∆C=1
eff |n⟩ ⟨n| H∆C=1

eff

∣∣∣D0
〉

m2
D − E2

n

n: all possible hadronic states. ρn: density of state. P: principal value.

Result: y ∼ 1%, agreeing with measurements.

What next?
More experimental input needed (BRs and phases).

Theory: Need to take into account more SU(3)F breaking effects.

Long-term: Lattice predictions?
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Inclusive Approach: Quark-Level

Heavy-Quark Expansion (HQE), motivated by τ(D+)/τ(D0).

Needed non-perturbative matrix elements from sum rules or Lattice

Severe GIM-cancellations may take place.

Recent Developments [Lenz Piscopo Vlahos 2007.03022]

GIM depends on scales entering different box contributions.
These contain different amounts of strangeness.

No need that these scales are the same⇒ GIM cancellation broken.

HQE uncertainty gets larger, including yexp.

What next?
Higher orders in HQE expansion.

After Γ12 also M12, e.g. with dispersion relations.
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Higher Order Sum Rules
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SU(3)-flavor

SU(3): Approximate symmetry for the light quarks u, d, s.

Very useful, but O(30%) breaking from corrections.

Going to higher order: complicated.

(15) ⊗ (8) = (42) ⊕ (24) ⊕ (151) ⊕ (152) ⊕ (15′) ⊕ (6̄) ⊕ (3)

(6̄) ⊗ (8) = (24) ⊕ (15) ⊕ (6̄) ⊕ (3)

Decay d B31
1 B32
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8 . . .
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Solving the Problem of Higher Order U-spin
[Gavrilova Grossman StS, 2205.soon]

We proved several theorems enabling calculations to arbitrary order.
We are able to determine a priori up to which order sum rules exist.

We do not need explicit Clebsches. Big complexity reduction.

Hope: Opens the door for precision in hadronic decays.

Close a gap between theory and experiment.

Take advantage of precision data on nonleptonic decays.

Stefan Schacht (Manchester) FPCP Oxford, MS May 2022 24 / 29



Systematics of U-spin breaking
U-spin breaking from mass difference of strange and down quarks:

ε =
ms − md

ΛQCD
∼ 0.3 .

Parametrized by triplet-operator Hε:

Heff =
∑
m,b

fu,m
(
Hu

m ⊗ H⊗b
ε

)
, H⊗b

ε ≡ Hε ⊗ · · · ⊗ Hε︸           ︷︷           ︸
b

.

Any system can be constructed from tensor products of doublets.

Moving irreps (“crossing sym.”) does not affect structure of sum rules.

Without loss of generality, consider doublet-only system with

0→
(
1
2

)⊗n

and singlet Hamiltonian.
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Properties of U-spin pairs
[Gavrilova Grossman StS, 2205.soon]

Amplitude:

Aj = (−,−,+,−,+, . . . ,+)︸                    ︷︷                    ︸
n

=
∑
α

CjαXα .

U-spin conjugated amplitude (complete interchange s↔ d):

Aj = (+,+,−,+,−, . . . ,−)︸                    ︷︷                    ︸
n

= (−1)p
∑
α

(−1)bCjαXα .

Notation: Abbreviate m-quantum number: ±1/2 7→ ±.
Xα: Reduced matrix element. Cjα: Clebsches.
Define (anti-)symmetric combinations of U-spin pairs:

aj ≡ Aj − (−1)pAj︸         ︷︷         ︸
odd in b

, sj ≡ Aj + (−1)pAj︸         ︷︷         ︸
even in b

.
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Results: Sum Rules at any order of U-spin breaking
[Gavrilova Grossman StS, 2205.soon]

All sum rules at any order b can be written as:∑
j

aj = 0 ,
∑

j

sj = 0 .

Example: n = 6 doublets. Dimension of lattice d = n/2 − 1 = 2.

Each node⇔ U-spin pair.

Each node (points):
a-type sum rule valid to b = 0.

Sums of nodes in lines:
s-type sum rules valid to b = 1.

Sum of all nodes in plane:
a-type sum rule valid up to b = 2.

5

4

3

2

1

1

2 3 4 5
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This is just the beginning of the exploration of charm CPV

Crucial: CP asymmetries of all SCS two-body charm decays.

Necessary to benefit from insights of flavor symmetry sum rules.

Most promising for next observation: D→ KSKS and D→ KK∗.

Test picture of flavor symmetry breaking: at expected level (30%)?

Important to search for optimized observables for multi-body decays.
How can we maximize sensitivity to CP violation?
What is the smartest binning for multi-body decays?

How can we formally account for the phase space effects when
comparing Dalitz plots that are related by flavor symmetries?
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Conclusions

So much more data and theory
ideas: New era in flavor physics.

We need to keep:

Theory error < Experimental error .

No matter what, we will learn sth
new: QCD or New Physics.
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BACK-UP
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Charm: Non-perturbative Diagrams
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