Theoretical Overview of CP Violation and Mixing in Charm

Stefan Schacht
University of Manchester

The 2022 Conference on Flavor Physics and CP Violation

Oxford, Mississippi, May 2022

Charm CP Violation:

New unique gate to flavor structure of up-type quarks.

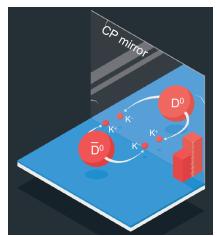
[LHCb 1903.08726, HFLAV 2021]

$$a_{CP}^{\mathrm{dir}}(D^0 \to K^+K^-) - a_{CP}^{\mathrm{dir}}(D^0 \to \pi^+\pi^-)$$

= $(-0.161 \pm 0.028)\%$.

Please note:

This is my personal list, so the overview is biased towards my own work.



Signs of a new era? Anomalies in Flavor Physics

• There are several anomalies. We are not sure what is behind them.

- Semileptonic and rare *B* decay data: Lepton-flavor non-universality?
- CP is not a fundamental symmetry of nature.
- Therefore, generically, BSM physics will also violate CP.

If anomalies confirmed: Expect deviations from SM also in CPV.

Outline

Direct Charm CP Violation

Charm Mixing and Indirect CP Violation

Higher Order Sum Rules

Direct Charm CP Violation

Direct CP Violation is an Interference Effect

$$a_{CP}^{\rm dir}(f) \equiv \frac{|\mathcal{A}(D^0 \to f)|^2 - |\mathcal{A}(\overline{D}^0 \to f)|^2}{|\mathcal{A}(D^0 \to f)|^2 + |\mathcal{A}(\overline{D}^0 \to f)|^2} \approx 2(r_{\rm CKM} \sin \varphi_{\rm CKM}) (r_{\rm QCD} \sin \delta_{\rm QCD}).$$

 $f = \mathsf{CP}\text{-eigenstate}.$

The decay amplitude:

$$\mathcal{A} = 1 + r_{\text{CKM}} r_{\text{QCD}} e^{i(\varphi_{\text{CKM}} + \delta_{\text{QCD}})}$$

- r_{CKM}: real ratio of CKM matrix elements.
- φ_{CKM} : weak phase.
- rocp : real ratio of hadronic matrix elements.
- $\delta_{\rm QCD}$: strong phase.

Where does the interference come from?

$$D^{0} \xrightarrow{V_{cd}^{*} V_{ud}} \pi^{+} \pi^{-}$$

$$D^{0} \xrightarrow{V_{cs}^{*} V_{us}} K^{+} K^{-} \xrightarrow{\text{QCD}} \pi^{+} \pi^{-}$$

$$D^{0} \xrightarrow{V_{cd}^{*} V_{ud}} \pi^{+} \pi^{-} \xrightarrow{\text{QCD}} K^{+} K^{-}$$

$$D^{0} \xrightarrow{V_{cs}^{*} V_{us}} K^{+} K^{-}$$

 $KK \leftrightarrow \pi\pi$ rescattering into same final state.

Weak and strong factors

$$\frac{\mathcal{A}(D \to \pi\pi \to KK)}{\mathcal{A}(D \to KK)} = \left(r_{\rm CKM}e^{i\varphi_{\rm CKM}}\right)\left(r_{\rm QCD}e^{i\delta_{\rm QCD}}\right)$$

- r_{QCD}: ratio of rescattering amplitudes.
- $\delta_{QCD} = O(1)$: strong phase.
- $r_{\text{CKM}} = 1$: ratio of CKM factors, $\left| V_{cd}^* V_{ud} / (V_{cs}^* V_{us}) \right|$
- $\varphi_{\text{CKM}} \approx 6 \cdot 10^{-4}$: deviation from 2×2 unitarity.

Prediction

$$\Delta a_{CP}^{dir} \sim 10^{-3} \times r_{QCD}$$

• *U*-spin decomposition: $r_{\rm QCD} = r_{\rm OCD}^{\Delta U=0} \equiv \mathcal{A}^{\Delta U=0}/\mathcal{A}^{\Delta U=1}$.

"
$$\Delta U = 0 \text{ rule}$$
": $r_{\rm QCD} \sim 1$ [Grossman StS 1903.10952]

- We claim $\Delta U = 0$ follows similar pattern as generalized $\Delta I = 1/2$ rule.
- Both due to low energy QCD, rescattering.

"
$$\Delta I = 1/2$$
 rules" for isospin in $P^+ \to \pi^+ \pi^0$, $P^0 \to \pi^+ \pi^-$, $P^0 \to \pi^0 \pi^0$

Relevant ratio of strong isospin matrix elements:

$r_{QCD}^{\Delta I=1/2} \equiv A^{\Delta I=1/2}/A^{\Delta I=3/2}$	Kaon	Charm	Beauty
Data	22	2.5	1.5
"No QCD" limit	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$
Enhancement	<i>O</i> (10)	<i>O</i> (1)	$O(\alpha_s)$

[D: Franco Mishima Silvestrini 2012, B: Grinstein Pirtskhalava Stone Uttayarat 2014]

 Rescattering most important in K decays, less important but still significant in D decays, and small in B decays.

Comparison of approaches: What is r_{QCD} ?

Data

Assuming the SM, and $\delta_{\rm QCD} = O(1)$, the data implies $r_{\rm QCD}^{\Delta U=0} \sim 1$.

Ref.	Theory Method/Assumptions	$r_{QCD}^{\Delta U=0}$	SM/NP
[Grossman StS 1903.10952]	Analogy to $\Delta I = 1/2$ rules	O (1)	SM
	Low energy QCD, rescattering is $O(1)$		
[Brod Kagan Zupan 1111.5000]	Phenomenological analysis	<i>O</i> (1)	SM
[Soni 1905.00907, StS Soni 2110.07619]	Resonance model	<i>O</i> (1)	SM
[Petrov Khodjamirian 1706.07780]	Light Cone Sum Rules	$O(\alpha_s/\pi)$	NP
[Chala Lenz Rusov Scholtz 1903.10490]	Resonances in principle incorporable.		

What next? Apply methods to $\Delta I = 1/2$ rule in charm! Reproduction of $\Delta I = 1/2$ crucial for NP case in $\Delta U = 0$.

The jury is still out: Is it SM or not?

- No matter what it is, we learn sth new.
- We have a good argument why it is QCD.
- Assumption of large rescattering at low energy agrees with the data.

Loop/Tree = O(1)

Key insight: Charm is not heavy.

A_{CP} Sum Rules: Overconstrain the SM

Challenge for predicting CP asymmetries

- New hadronic quantities appear.
- These cannot be extracted from \mathcal{B} measurements.

Solution

Make up $SU(3)_F$ sum rules in which these cancel.

SU(3)_F limit sum rules

$$a_{CP}^{\text{dir}}(D^0 \to \pi^+\pi^-) + a_{CP}^{\text{dir}}(D^0 \to K^+K^-) = 0,$$

 $a_{CP}^{\text{dir}}(D_S^+ \to K_S\pi^+) + a_{CP}^{\text{dir}}(D^+ \to K_SK^+) = 0.$

Key Measurements for $D \rightarrow PP'$.

A_{CP} sum rules including breaking effects [Müller Nierste StS 1506.04121]

- SM sum rule 1: $D^0 \rightarrow K^+K^-$, $D^0 \rightarrow \pi^+\pi^-$. $D^0 \rightarrow \pi^0\pi^0$.
- SM sum rule 2: $D^+ \rightarrow K_S K^+$, $D_s^+ \rightarrow K_S \pi^+$, $D_s^+ \rightarrow K^+ \pi^0$.

Isospin Analysis

[Grossman Kagan Zupan 1204.3557]

• Extract $\Delta I = 1/2$ and $\Delta I = 3/2$ MEs from

$$D^0 \to \pi^+\pi^-,\, D^+ \to \pi^+\pi^0,\, D^0 \to \pi^0\pi^0.$$

• $a_{CP}^{\text{dir}}(D^+ \to \pi^+ \pi^0) = 0$. Higher orders < sensitivity.

What next?

- Measurements of CP asymmetries in all SCS D → PP' decays.
- Need sum rules for multi-body decays at higher order in SU(3)_F.

What next? Check dynamical mechanism from data.

$$D^{0} \xrightarrow{V_{cs}^{*}V_{ud}} \pi^{+}\pi^{-}$$

$$D^{0} \xrightarrow{V_{cs}^{*}V_{us}} K^{+}K^{-} \xrightarrow{QCD} \pi^{+}\pi^{-}$$

$$D^{0} \xrightarrow{\pi^{+}} f_{0} \xrightarrow{K^{+}} D^{0} \xrightarrow{K^{+}} f_{0} \xrightarrow{\pi^{+}}$$

Assumptions

[StS and A. Soni, 2110.07619]

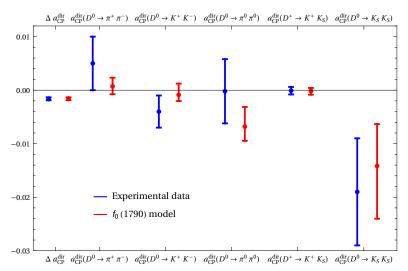
- Amplitudes to I = 0 states dominated by f_0 close to D^0 mass.
- Amplitudes into I = 1 states relatively suppressed.

Resonance structure can also be incorporated in future LCSR calculations.

[Khodjamirian Petrov 1706.07780]

Predictions in Scalar Resonance Model

[StS and A. Soni, 2110.07619]



What next? Study of $\Delta U = 0$ in three-body decays

[Dery Grossman StS Soffer 2101.02560]

$$\begin{split} \mathcal{A}(D^0 \to \pi^+ \rho^-) &= -\lambda \, T^{P_1 V_2} - V_{cb}^* V_{ub} \, R^{P_1 V_2} \\ \mathcal{A}(D^0 \to \pi^- \rho^+) &= -\lambda \, T^{P_2 V_1} - V_{cb}^* V_{ub} \, R^{P_2 V_1} \end{split}$$

Time-integrated CP asym. of 2-body decays give only combinations

$$|\widetilde{R}^{P_1V_2}|\sin(\delta_{P_1V_2})$$
 and $|\widetilde{R}^{P_2V_1}|\sin(\delta_{P_2V_1})$,

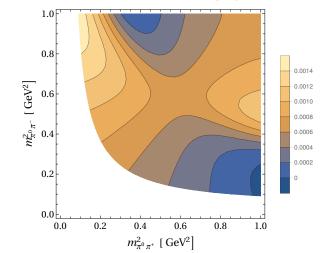
but not magnitudes and phases separately.

- Three body decay changes 2 things:
 - We have additional kinematic dependences.
 - Only in a three-body decay we have interference between $D^0 \to \pi^+(\rho^- \to \pi^-\pi^0)$ and $D^0 \to \pi^-(\rho^+ \to \pi^+\pi^0)$.

▶Extraction of all parameters from time-integrated CP meas.

Local $a_{CP}^{\rm dir}(D^0 \to \pi^+\pi^-\pi^0)$ in overlap region of ρ^\pm

[Dery Grossman StS Soffer 2101.02560]

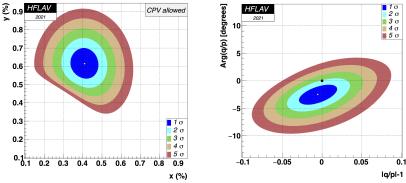


Numerical example:

 $\widetilde{R}^{P_1 V_2} = \exp(i\pi/2), \quad \widetilde{R}^{P_2 V_1} = \frac{1}{4} \exp(i\pi/3)$

Charm Mixing and Indirect CP Violation

Charm Mixing



- Mixing parameters $x \equiv \Delta m/\Gamma$ and $y \equiv \Delta \Gamma/(2\Gamma)$.
- 2021: First observation of $x \neq 0$ with $> 7\sigma$. [LHCb 2106.03744].
- Uncertainty of y reduced by a factor two in [LHCb 2110.02350].
- $|q/p| \neq 1$ would indicate CPV in mixing.
- $Arg(q/p) \neq 0$ would indicate CPV from interference mixing/decay.
- SM: hard to calculate. Qualitative agreement with SM.

Exclusive Approach: Hadron-Level

$$\begin{split} &\Gamma_{12}^{D} = \sum_{n} \rho_{n} \left\langle \overline{D^{0}} \right| \mathcal{H}_{eff}^{\Delta C=1} \left| n \right\rangle \left\langle n \right| \mathcal{H}_{eff}^{\Delta C=1} \left| D^{0} \right\rangle \,, \\ &M_{12}^{D} = \sum_{n} \left\langle \overline{D^{0}} \right| \mathcal{H}_{eff}^{\Delta C=2} \left| D^{0} \right\rangle + \mathcal{P} \sum_{n} \frac{\left\langle \overline{D^{0}} \right| \mathcal{H}_{eff}^{\Delta C=1} \left| n \right\rangle \left\langle n \right| \mathcal{H}_{eff}^{\Delta C=1} \left| D^{0} \right\rangle}{m_{D}^{2} - E_{n}^{2}} \end{split}$$

- n: all possible hadronic states. ρ_n : density of state. \mathcal{P} : principal value.
- Result: $y \sim 1\%$, agreeing with measurements.

What next?

- More experimental input needed (BRs and phases).
- Theory: Need to take into account more SU(3)_F breaking effects.
- Long-term: Lattice predictions?

Inclusive Approach: Quark-Level

- Heavy-Quark Expansion (HQE), motivated by $\tau(D^+)/\tau(D^0)$.
- Needed non-perturbative matrix elements from sum rules or Lattice
- Severe GIM-cancellations may take place.

Recent Developments

[Lenz Piscopo Vlahos 2007.03022]

- GIM depends on scales entering different box contributions.
 These contain different amounts of strangeness.
- No need that these scales are the same ⇒ GIM cancellation broken.
- HQE uncertainty gets larger, including y^{exp}.

What next?

- Higher orders in HQE expansion.
- After Γ_{12} also M_{12} , e.g. with dispersion relations.

Higher Order Sum Rules

SU(3)-flavor

- SU(3): Approximate symmetry for the light quarks u, d, s.
- Very useful, but O(30%) breaking from corrections.
- Going to higher order: complicated.

$$\begin{split} &(15) \otimes (8) = (42) \oplus (24) \oplus (15_1) \oplus (15_2) \oplus (15') \oplus (\bar{6}) \oplus (3) \\ &(\bar{6}) \otimes (8) = (24) \oplus (15) \oplus (\bar{6}) \oplus (3) \end{split}$$

Decay d	$B_1^{3_1}$	$B_1^{3_2}$	$B_8^{3_1}$	$B_8^{3_2}$	$B_8^{\bar{6}_1}$	$B_8^{ar{6}_2}$	$B_8^{15_1}$	
$D^0 \to K^+K^-$	$\frac{1}{4\sqrt{10}}$	$\frac{1}{8}$	$\frac{1}{10\sqrt{2}}$	$\frac{1}{4\sqrt{5}}$	$\frac{1}{10}$	$-\frac{1}{10\sqrt{2}}$	$-\frac{7}{10\sqrt{122}}$	
$D^0 o \pi^+\pi^-$	$\frac{1}{4\sqrt{10}}$	$\frac{1}{8}$	$\frac{1}{10\sqrt{2}}$	$\frac{1}{4\sqrt{5}}$	$-\frac{1}{10}$	$\frac{1}{10\sqrt{2}}$	$-\frac{11}{10\sqrt{122}}$	
$D^0 o \bar{K}^0 K^0$	$-\frac{1}{4\sqrt{10}}$	$-\frac{1}{8}$	$\frac{1}{5\sqrt{2}}$	$\frac{1}{2\sqrt{5}}$	0	0	$-\frac{9}{5\sqrt{122}}$	
$D^0 \to \pi^0 \pi^0$	$-\frac{1}{8\sqrt{5}}$	$-\frac{1}{8\sqrt{2}}$	$-\frac{1}{20}$	$-\frac{1}{4\sqrt{10}}$	$\frac{1}{10\sqrt{2}}$	$-\frac{1}{20}$	$\frac{11}{20\sqrt{61}}$	

Solving the Problem of Higher Order U-spin

[Gavrilova Grossman StS, 2205.soon]

We proved several theorems enabling calculations to arbitrary order.

- We are able to determine a priori up to which order sum rules exist.
- We do not need explicit Clebsches. Big complexity reduction.
- Hope: Opens the door for precision in hadronic decays.
- Close a gap between theory and experiment.

Take advantage of precision data on nonleptonic decays.

Systematics of U-spin breaking

U-spin breaking from mass difference of strange and down quarks:

$$\varepsilon = \frac{m_s - m_d}{\Lambda_{\rm OCD}} \sim 0.3.$$

Parametrized by triplet-operator H_ε:

$$\mathcal{H}_{\text{eff}} = \sum_{m,b} f_{u,m} \left(H_m^u \otimes H_{\varepsilon}^{\otimes b} \right) , \qquad H_{\varepsilon}^{\otimes b} \equiv \underbrace{H_{\varepsilon} \otimes \cdots \otimes H_{\varepsilon}}_{b} .$$

- Any system can be constructed from tensor products of doublets.
- Moving irreps ("crossing sym.") does not affect structure of sum rules.
- Without loss of generality, consider doublet-only system with

$$0 \to \left(\frac{1}{2}\right)^{\otimes n}$$
 and singlet Hamiltonian.

Properties of *U*-spin pairs

[Gavrilova Grossman StS, 2205.soon]

• Amplitude:

$$A_j = \underbrace{(-,-,+,-,+,\ldots,+)}_{n} = \sum_{\alpha} C_{j\alpha} X_{\alpha}.$$

• U-spin conjugated amplitude (complete interchange $s \leftrightarrow d$):

$$\overline{A}_{j} = \underbrace{(+,+,-,+,-,\ldots,-)}_{n} = (-1)^{p} \sum_{\alpha} (-1)^{b} C_{j\alpha} X_{\alpha}.$$

- Notation: Abbreviate m-quantum number: $\pm 1/2 \mapsto \pm$. X_{α} : Reduced matrix element. $C_{i\alpha}$: Clebsches.
- Define (anti-)symmetric combinations of *U*-spin pairs:

$$a_j \equiv \underbrace{A_j - (-1)^p \overline{A}_j}_{\text{odd in } b},$$
 $s_j \equiv \underbrace{A_j + (-1)^p \overline{A}_j}_{\text{even in } b}.$

Results: Sum Rules at any order of *U*-spin breaking

[Gavrilova Grossman StS, 2205.soon]

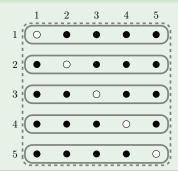
All sum rules at any order *b* can be written as:

$$\sum_{i} a_j = 0,$$

$$\sum_{i} s_j = 0$$

Example: n = 6 doublets. Dimension of lattice d = n/2 - 1 = 2.

- Each node $\Leftrightarrow U$ -spin pair.
- Each node (points):
 a-type sum rule valid to b = 0.
- Sums of nodes in lines:
 s-type sum rules valid to b = 1.
- Sum of all nodes in plane:
 a-type sum rule valid up to b = 2.



This is just the beginning of the exploration of charm CPV

- Crucial: CP asymmetries of all SCS two-body charm decays.
- Necessary to benefit from insights of flavor symmetry sum rules.
- Most promising for next observation: $D \to K_S K_S$ and $D \to K K^*$.
- Test picture of flavor symmetry breaking: at expected level (30%)?
- Important to search for optimized observables for multi-body decays.
 How can we maximize sensitivity to CP violation?
 What is the smartest binning for multi-body decays?
- How can we formally account for the phase space effects when comparing Dalitz plots that are related by flavor symmetries?

Conclusions

- So much more data and theory ideas: New era in flavor physics.
- We need to keep:

Theory error < Experimental error.

 No matter what, we will learn sth new: QCD or New Physics.

BACK-UP

Charm: Non-perturbative Diagrams

