

Forward Search ExpERiment at the LHC

- Many light particles at LHC produced in π , K, D meson decay
 - $N\sim 10^{16}$ pions/ 10^{12} neutrinos in LHC Run 3 (2022-2025)
 - E~ TeV $\theta_{\text{beam axis}}$ ~ mrad

- 480m downstream from ATLAS, the FASER experiment is placed directly into this beam
 - Proposed to search for long-lived particles and measure high energy neutrino nucleon interaction
 - Well shielded from ATLAS IP

Dark Photon

Spin 1, couples weakly to SM fermions

$$\mathcal{L} \supset -\frac{\varepsilon'}{2} F_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m'^2 X^2$$

Mainly from decays of light mesons, π , η , dark bremsstrahlung and hard scattering

480m

Axion-like Particles

ALPs only couple to photons

$$\mathcal{L} \supset -\frac{1}{2} \frac{m_a^2}{a} a^2 - \frac{1}{4} \frac{g_{a\gamma\gamma}}{a} a F^{\mu\nu} \widetilde{F}_{\mu\nu} \ ,$$

Mainly produced via Primakoff process ($\gamma N \rightarrow aN$)

Exploring neutrinos at the TeV energy

Sensitive to new physics by measuring scattering cross sections and studying each flavor

Exploring neutrinos at the TeV energy

Sensitive to new physics by measuring scattering cross vinteraction $v(\bar{v})$ $v(\bar{v})$ $v(\bar{v})$ $v(\bar{v})$ $v(\bar{v})$ sections and studying each flavor $v(\bar{v})$ $v(\bar{v})$ v(

Detector 3 Tracker stations: Scintillator **EM Calorimeter:** ATLAS IP Scintillator: Decay volume: Trigger/preshower FASERv: Interface tracker: Scintillator station: Magnets: ~5 m long, 20 cm diameter 0.55 T

Decay volume

emulsion

Veto

Calorimeter

Tracking spectrometer

Silicon Tracker

- Based on ATLAS SCT modules: 8 modules x 3 layers x 4 stations = 96 modules
 - Resolution: 17 um x 580 um
 - Good separation for two collimated tracks

Paper available from NIMA (2022) 166825

- 4 stations commissioned and installed
 - 99.9% strips are active
 - Expected noise/gain are confirmed
 - Thermal performance looks good
 - Interlock/safety are carefully verified

SCT module

Tracking layer

22

E(A0) [GeV]

80 um pitch, 768 strips/side 40 mrad stereo angle

24 cm x 24 cm sensitive area

Scintillator and Calorimeter

Four scintillator stations are commissioned and installed

- > 99.9% efficiency, enough to trigger LLP decay inside the FASER detector
- Confirmed by in situ measurements in 2018.

Calorimeter based on LHCb ECAL module is also installed. One module has:

- 12 cm x 12 cm $(25 X_0)$
- 66 layers of (2mm lead and 4mm scintillator)

Resolution ~1% for 1 TeV electron energy deposits

Trigger and Data acquisition

Readout electronics in TI12

- Tracker: Custom General purpose I/O (GPIO) board
- Scintillator and Calorimeter: CAEN digitiser
- Trigger: Custom GPIO board
 - 500 Hz expected rate (dominant by muon flux, 1 Hz/cm² for L=2×10³⁴ cm⁻²s⁻¹)
 - Clock and bunch taken from LHC
- Ethernet switch -> Servers on surface

All components are installed and pass 1KHz test Paper is published: 2021 JINST 16 P12028

FASERv Emulsion/Tungsten

Charged particle ionization recorded and can be amplified and fixed by chemical development of film

- 770 emulsions interleaved with 1-mm-thick tungsten plates (1.1 tonnes) Track position resolution ~50 nm Angular resolution ~0.35 mrad No Timing information

Pilot detector (29 kg) exposed in TI18 for 1 month in 2018

- Observed first c
- ollider v candidates (2.7 σ) with 12.2 fb⁻¹ data!
- Phys. ReV. D 104, L091101

FASER in TI12

Successfully Installed in TI12 March 2021

Current partial (30%) FASERv

- Frequent exchange in Run 3
- 1st full detector July 26 (TS1)
- 2nd full detector Sep 13 (TS2)

Test Beam Summer 2021

 $e (5-300 \ GeV) \\ \mu (150 \ GeV) \\ \pi (200 \ GeV)$

Reasonable energy resolution confirmed

First beam particles in May 2022

- Saw first beam particles from recent 6.8 TeV beam optics tests!
- First particles traversing full detector, including Fwd Veto and IFT
- Good readiness confirmed toward Run 3

Preshower upgrade for 2023/2024

- Preshower scintillator will be replaced by hybrid pixel detector (100µm pitch, 130nm SiGe BiCMOS)
- Upgrade to enable detecting ALPs→ γγ searches (2 photon separation by ~200μm)
- Installation by the end of 2023, and data-taking from 2024
- Approved by CERN. See TDR <u>CERN-LHCC-2022-006</u>

hexagonal pixels

Prototype chip

W-Si Detector

Forward Physics Facility toward HL-LHC

A new dedicated facility ~600 m to west of ATLAS (IP1)

Rich and broad physics programs:

- Extending BSM dark sector searches
- Neutrino physics
- New inputs for QCD and astrophysics

- Very preliminary cost: ~40 MCHF (62% civil engineering/38% service)
- Experiments on top

Summary

- FASER a new forward experiment at the LHC in the unused tunnel, TI12
 - Give access to light weakly-coupled particles in MeV-GeV range
 - Probe TeV-energy neutrino in all flavors First collider neutrino candidate is published!
- Ready for data taking in LHC Run 3 from 2022:
 - All detectors installed in TI12
 - Great progress of test beam analysis and commissioning to verify expected performance
- Upgrade toward enhancing forward physics program
 - Near term preshower upgrade for ALP search
 - Longer term Forward Physics Facility enabling broad physics programs
 - Tight timeline for construction
 - More discussions in Seattle Snowmass
 Community Summer Study July 17-26 2022

Backup

Beam Backgrounds

- FLUKA simulations and in situ measurements have been used to assess the backgrounds expected in FRASER
- FLUKA simulations studied particles entering FASER from:
 - - IP1 collisions, off-orbit protons hitting beam pipe aperture, beam-gas interactions
- Expect a flux of high energy muons (E>10 GeV) of 0.5 cm⁻²s⁻¹ at FASER for 2x10³⁴cm⁻²s⁻¹ luminosity from IP1 collisions

Large muon charge asymmetry at FASER due to LHC bending magnets

Physics Program of Forward Physics Facility

BSM particles can be detected in various ways

 Giving access to wide range of models

Neutrinos can be used to search for BSM effects

- Production
- Propagation
- Interaction

FASER2

scaled up version of FASER2 with ~100 x active area

- Veto: similar scintillator-based
- Magnets: Superconducting w/B = 1 T
- Tracker: much larger using e.g. SiFI/SiPM
- Calo/Muon: enhanced PID & position resol.

	FASER	FASER2
R [m]	0.1	1
DV [m]	1.5	10
TS [m]	2.6	10

FASER2 Physics

- Wide LLP program probing many models
- Dark vectors, (pseudo) scalars, ALPs, HNLs, ...
- Extended sensitivity to higher mass

Benchmark Model	FASER	FASER 2
Dark Photons		√
B-L Gauge Bosons	V	V
$L_i - L_j$ Gauge Bosons	_	_
Dark Higgs Bosons	_	√
Dark Higgs Bosons with hSS	_	√
HNLs with e	_	√
HNLs with μ	-	√
HNLs with τ	√ √	√
ALPs with Photon	√	√
ALPs with Fermion	_	√
ALPs with Gluon	√	√
Dark Pseudoscalars	_	√

Run3 (2022-2025)

HL-LHC (2029-)

FASERv2

- ~20t emulsion + tungsten detector
- Focus on vt

FLArE: Forward Liquid Argon Experiment

Other experiments

AdvSND

Off-axis v detecto

• Forward charm prod. + low-x gluon PDF

• Scintillator/tungsten detector

• For milli-charged particles

Magnet

Muon filter

Had Cal

27