CP violation in B mesons Daniele Manuzzi on behalf of the LHCb collaboration, with results from Belle and Belle II collaborations

May 23/27, 2022, FPCP 2022

Today

Introduction

- Recent results by LHCb, Belle and Belle II
 - ^o Measurements of CKM phase $\gamma \equiv \phi_3$
 - ^o Update on $B \rightarrow K\pi$ puzzle
 - $\circ \mathcal{CP}$ in B decays to charmless resonances and multi-body final states
- Some prospects

Generalities

- The matter-antimatter asymmetry of the universe requires \mathcal{CP} sources not predicted by the Standard Model
- *CP* manifests due to interference of quantum processes

Where do we observe \mathcal{CP} phenomena?

Testing the SM wi

- The SM encodes the \mathcal{CP} phenomena with a single complex phase in the CKM matrix
- The CKM matrix is unitary

 $J = c_{12}c_{13}^2c_{23}s_{12}s_{13}s_{23}\sin\delta_{13}$

From this form it is clear why this quantity occurs in all CP violati any one of the mixing angles is zero. This would reduce the CKM a 2×2 matrix and allow the removal of the phase. Also if the cor zero no CP violation is possible. As a final comment the quantity

The UT angle γ

- Measured in tree-level decays sensitive to interference between the favoured $b \rightarrow cW$ and the suppressed $b \rightarrow uW$ decay amplitudes $b \rightarrow uW$
- Golden mode: $B^{\pm} \to DK^{\pm} \to DK^{\pm}$
- Several time-independent modes $K_{K\pi\pi}^{\nu}$
 - $B^{\pm} \rightarrow D^{(*)}h^{(*)}$ with D mixture of D^0 and \overline{D}^0 decaying to same f_D
- Time-dependent (mixing/decay interf.)
 - $B^0 \to D^{\mp} \pi^{\pm}$
 - $B_{s}^{0} \rightarrow D_{s}^{\mp} K^{\pm}$

γ using $B^{\pm} \rightarrow Dh^{+}$ ($D \rightarrow K_{c}^{0}h^{+}h^{-}$) by Belle + Belle I

- $h \in \{\pi, K\}$
- Joint data sample:
 - \circ 711 fb⁻¹ from Belle
 - 128 fb^{-1} from Belle II
- Improvements wrt previous Belle $C_i, S_i: D^0 D^0$ strong phase differences Kinpselection, BES. 1946 pEession, 0 sig for the state of the state $D^0 \rightarrow K^0_{\rm s} K^+ K^-$

• Model independent: analysis performed in Dalitz bins, using (new) inputs from CLEO and BESIII PRD 82 (2010) 112006 PRD 102 (2020) 052008 PRD 101 (2020) 112002

JHEP 02, 063 (2022)

LHCb combination of UT angle γ JHEP 12 (2021) 141 LHCb

- New: combination of results from **beauty** and **charm** sectors
 - Correlation between y_D and $\delta_D^{K\pi}$ in $D^0 \to K^{\pm}\pi^{\mp}$
 - D mixing affects $B^{\pm} \rightarrow D\pi^{\pm}$
- Frequentist approach
 - 151 observables, 52 unknowns 0
 - External constraints: see backup 0

indirect global **CKM** fitters Stat. dominated

factor 2 improvement wrt previous W.A.

$\gamma \operatorname{using} B^{\pm} \to Dh^{\pm} (D \to h^{+}h^{'\pm}\pi^{0}) \operatorname{by} LHCb {}_{\operatorname{submitted to JHEP}}^{\operatorname{arXiv:2112.10617}}$

- Study 8 final states Mode $(h^- = \{\pi^-, K^-\})$ Analysis type $B^- \to [K^- \pi^+ \pi^0]_D h^$ quasi-ADS (fav.) $B^- \to [\pi^- K^+ \pi^0]_D h^$ quasi-ADS (sup.) $B^- \to [K^- K^+ \pi^0]_D h^$ quasi-GLW $B^- \to [\pi^- \pi^+ \pi^0]_D h^$ quasi-GLW
- Discovery of $B^- \to [\pi^- K^+ \pi^0]_D K^- (7.8\sigma!)$
- Simultaneous invariant-mass fit to 16 sub-samples

Dataset: full Run1+Run2 (9 fb⁻¹**)**

- δ_B 160 • Fit performed to $11 \mathcal{CP}$ **observables** (ratios R_h^{\pm} / asym. $A_h^{hh'\pi^0}$) $140 \cdot$ with world best precision 120 -
- Interpret in terms of γ , r_B , δ_B
- Global minimum $\gamma = (145^{+9}_{-39})^{\circ}$
- Second solution consistent with LHCb γ combination

 $\gamma \operatorname{using} B^{\pm} \to Dh^{\pm} (D \to h^{+}h^{'\pm}\pi^{0}) \operatorname{by} LHCb \operatorname{submitted to JHEP}^{\operatorname{arXiv:2112.10617}}$

Results:

100

80

$$\delta_B = (122^{+19}_{-23})^{\circ}$$
$$r_B = (9.3^{+1.0}_{-0.9})^{\circ}$$

BR and \mathcal{CP} in $B \to \overline{D}^0 \pi$ decays

- $\overline{D}^0 \to K^+\pi^-, K^+\pi^-\pi^0$
- Motivations:
 - The measured $\mathbf{BR}(B^0 \to \overline{D}{}^0 \pi^0)$ is $\times 4$ theory predictions <u>PhysRevD.82.074007</u>
 - Large \mathcal{CP} would be hint of new physics 0
 - Control mode for rare charmless *B* decays 0
- **Full Belle** data sample (711 fb^{-1})
- Fit to M_{bc} , ΔE , BDT output variable
- *B*-flavour tagged by *K* charge
 - corrections to **BF** 0
 - 0 negligible for A_{CP}
- Analysis applied also to $B^+ \to \overline{D}{}^0 \pi^+$

PRD 105, 072007 (2022)

$$\mathcal{A}_{CP}(B^+ \to \bar{D}^0 \pi^+) = (2.10 \pm 0.00^{\circ} \pm 0.10^{\circ}) \times 10^{\circ}$$

$$\mathcal{A}_{CP}(B^+ \to \bar{D}^0 \pi^+) = (0.19 \pm 0.36 \pm 0.57)\%$$

$$\mathcal{B}(B^+ \to \bar{D}^0 \pi^+) = (4.53 \pm 0.02 \pm 0.15) \times 10^{-3}$$
Most provide the measure of the test of test of the test of tes

All results agree with previous measurements

Time dependent \mathcal{CP} in $B \to K_S K_S K_S$ by Belle

- Penguin topology
- The SM predicts: $S = -\sin(2\beta)$ and A = 0

- Full Belle dataset (711 fb^{-1})
 - ^o Selection with NN (dominant bkg: $e^+e^- \rightarrow q\overline{q}$)
 - Veto for charmed resonances
- Fit strategy:

 - 2) fit to Δt for time dependent \mathcal{CP} parameters

Results:

and SM prediction

PRD103,032003

The long-standing $B \rightarrow K\pi$ puzzle:

Recently measured by LHCb [PRL126(2021)9, 091802]

Recently measured by LHCb [JHEP 2021, 75 (2021)]

Is it due to strong phases and amplitudes or is new physics emerging from the loops?

• Full $B \rightarrow K\pi$ puzzle sum rule [PLB627(2005)82].

honzero at 8σ

any deviation from this would be a sign of new physics

\mathscr{P} in $B^0 \to K^0_c \pi^0$ decays by Belle II

- Perform a 4D fit to ΔE , M_{bc} , Δt , and continuumsuppression output
- $B^0 \rightarrow J/\psi(\mu^+\mu^-)K_S^0$ used as a control sample. Measured lifetime and ACP consistent with know values.
- Wrong-tag fraction measured from mixing measurements using $B^0 \to D^{(*)}h$ decays
- Limited sample size: constrain S_{CP} using previous measurements to maximise precision in A_{CP}

Results:

 $A_{CP}(B^0 \to K_S^0 \pi^0) = -0.41^{+0.32}_{-0.30}$ (stat.) ± 0.09 (syst.) $\mathbf{B}(B^0 \to K_S^0 \pi^0) = (11.0 \pm 1.2 \,(\text{stat.}) \pm 1.0 \,(\text{syst.})) \times 10^{-6}$

World average: $A_{CP}(B^0 \to K_S^0 \pi^0) = 0.00 \pm 0.13$

- Results establish Belle II capabilities.
- Expect to obtain 0.03 precision on the isospin sum-rule with 50/ab

Firstly showed at Moriond EW 2022, preliminary

Direct \mathcal{CP} in $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$ by LHCb

- Prequels:
 - Evidence of global direct CPV and high localised CP asymmetries 0 across the Dalitz plot in charmless 3-body B decay [PRD90(2014)112004]
 - Amplitude analysis of $B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}$: large \mathcal{CP} related to S- and P-wave interference [PRL124(2020)031801, PRD101(2020)012006]
 - Amplitude analysis of $B^{\pm} \rightarrow \pi^{\pm} K^+ K^-$: \mathcal{CP} connected to $\pi\pi \leftrightarrow KK$ rescattering [PRL123 (2019) 231802] [Prog. Part. Nucl. Phys. 114 (2020) 103808]
- Analysis using **Run2** data (5.9 fb⁻¹) Measurement of *CP* in the decay for $\begin{cases} B^{\pm} \rightarrow B^{\pm} \rightarrow B^{\pm} B^{\pm}$
 - - phase-space integrated
 - depending on the regions of the phase space 0
 - Measurement of CP asymmetry in $B \rightarrow PV$ decays

LHCb-PAPER-2021-049 LHCb-PAPER-2021-050 Preliminary

$$\rightarrow \pi^{\pm}\pi^{+}\pi^{-} \quad B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$$
$$\rightarrow \pi^{\pm}K^{+}K^{-} \quad B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$$

Global \mathcal{CP} in $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$

 Simultaneous invariant mass fit to $B^+/B^$ to extract raw asymmetries

- Raw asymmetries corrected for
 - detector efficiency effects (simulation & data-driven tech.)
 - production asymmetries $A_{\rm P} = A_{raw}^{\rm ACC}(B^{\pm} \to J/\psi K^{\pm}) - A_{CP}(B^{\pm} \to J/\psi K^{\pm})$ ext. (PDG) meas. (LHCb data)

LHCb-PAPER-2021-049 Preliminary

CP asymmetry: phase space

• Measurement of A_{CP} in bins of the phase space, using an adaptive binning and taking into account acceptance correction

CP asymmetry: phase space

seen in all four channels

• Significant \mathcal{CP} in the $\pi\pi \leftrightarrow KK$ rescattering region $\rightarrow m^2 \in [1, 2.25]$ GeV²/c⁴

$\mathcal{CP} \text{ in } B \rightarrow PV$

- Few measurements $B \rightarrow PV$ decays in the literature and huge theoretical interest
- Large phase space available: different interfering resonant intermediate amplitudes
- Simplified method to extract A_{CP}

 $B \to R(\to h_1^- h_2^+) h_3^+$

\mathcal{A} in $B^{\pm} \rightarrow \rho^{\pm} \rho^{0}$ decays by Belle II

• Motivation: CKM angle α measurable through combination of: $B^0 \rightarrow \rho^0 \rho^0, B^0 \rightarrow \rho^+ \rho^-, B^+ \rightarrow \rho^+ \rho^0$

- To do that, measure direct \mathcal{CP} in decays where ρ^+ and ρ^0 are longitudinally polarised, need:
 - ^o Longitudinal polarisation fraction (f_I) \rightarrow measure π^{\pm} helicity angles
 - Asymmetry in rate $B^+ \to \rho^+ \rho^0$ vs. $B^- \to \rho^- \rho^0$

Firstly showed at Moriond EW 2022 preliminary

 $\downarrow \quad \stackrel{\downarrow}{\rightarrow} \pi^{+}\pi^{-} \\ \stackrel{}{\rightarrow} \pi^{+}\pi^{0}$

CP due to interference between tree and penguin

20

\mathcal{CP} in $B^{\pm} \to \rho^{\pm} \rho^{0}$ decays by Belle II

- Large bkg. from: $e^+e^- \rightarrow u\overline{u}, d\overline{d}, c\overline{c}, s\overline{s}$
 - Reduced with MVA
- 6D templates fit taking considering correlations in Templates from MC, calibrated using control channels 0
- Instrumental asymmetry measured with $D^+ \rightarrow K_s^0 \pi^+$

•
$$A_{\text{det}} = (0.4 \pm 0.5) \%$$

Result compatible with previous measurements: $A_{CP}(B^+ \to \rho^+ \rho^0) = -0.069 \pm 0.068 \text{ (stat)} \pm 0.060 \text{ (syst.)}$ $\mathbf{B}(B^+ \to \rho^+ \rho^0) = (23.2^{+2.2}_{2.1} \text{ (stat.)} \pm 2.7 \text{ (syst.)}) \times 10^{-6}$ $f_L = 0.943^{+0.035}_{-0.033}$ (stat.) ± 0.027 (syst.) World average: $A_{CP}(B^+ \to \rho^+ \rho^0) = -0.05 \pm 0.05$

- Belle II performance superior to Belle.
- Systematic uncertainties mainly data-driven, expect to be reduced with more data.

Firstly showed at Moriond EW 2022 preliminary

-0.8 -0.6 -0.4 -0.2

0

0.2

0.4

0.6

 $\cos heta_{
ho^+}$ 21

\mathcal{CP} search in $B^0 \rightarrow p\bar{p}K^+\pi^-$ decays

- Promising process to observe for the first time \mathcal{CP} in B decays to final states with half-spin particles [Eur.Phys.J. C (2020) 80:565]
- Search for P and CP violation using triple-product asymmetries
 - \hat{T} -odd observables:
- $C_{\hat{T}} = \vec{p}_{K^+} \cdot (\bar{p}$

• Asymmetries:

• P and CP observables: $a_P^{\hat{T}\text{-odd}} = \frac{1}{2}(A_{\hat{T}})$

$$\vec{p}_{\pi^-} \times \vec{p}_p$$
) $\vec{C}_{\hat{T}} = \vec{p}_{K^-} \cdot (\vec{p}_{\pi^+} \times \vec{p}_{\bar{p}})$

$$\frac{N(C_{\hat{T}} < 0)}{N(C_{\hat{T}} < 0)}, \quad \bar{A}_{\hat{T}} = \frac{\bar{N}(-\bar{C}_{\hat{T}} > 0) - \bar{N}(-\bar{C}_{\hat{T}} < 0)}{\bar{N}(-\bar{C}_{\hat{T}} > 0) + \bar{N}(-\bar{C}_{\hat{T}} < 0)}$$

$$+ \bar{A}_{\hat{T}}) \quad a_{CP}^{\hat{T}\text{-odd}} = \frac{1}{2}(A_{\hat{T}} - \bar{A}_{\hat{T}})$$

Sensitive to interference of P-even and P-odd amplitudes and have different sensitivity to strong phases

Not sensitive to reconstruction efficiency and *b*-hadron production asymmetries

\mathcal{P} search in $B^0 \to p\bar{p}K^+\pi^-$ decays

- - full phase space

$$a_P^{\hat{T}\text{-odd}} = (1.49 \pm 0.85 \pm 0.08)\%$$

NO evidence of

bins of the phase space

arXiv:2205.08973

the resonance mass pole where the strong phase changes its sign

Some Prospects

The plan

arXiv:2203.11349v1 LHCC-2021-012

Future potential for the UT

Belle II 50 ab^{-1}	$\frac{\text{LHCb}}{300 \text{ fb}^{-1}} + \frac{\text{Belle II}}{250 \text{ ab}^{-1}}$
0.6°	0.3°
0.005	< 0.002
1.5°	< 0.35°

Backup

γ using $B^{\pm} \rightarrow Dh^+$ ($D \rightarrow K_s^0 h^+ h^-$) by Belle + Belle II

Source	$\sigma_{x_+^{DK}}$	$\sigma_{y_+^{DK}}$	$\sigma_{x_^{DK}}$	$\sigma_{y_{-}^{DK}}$	$\sigma_{x_{\xi}^{D\pi}}$	$\sigma_{y_{\xi}^{D\pi}}$
Input c_i, s_i	0.22	0.55	0.23	0.67	0.73	0.82
PDF parametrisation	0.07	0.08	0.12	0.16	0.12	0.12
PID	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01
Peaking background	0.03	0.05	0.03	0.04	0.02	0.10
Fit bias	0.16	0.06	0.12	0.16	0.49	0.10
Bin migration	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.03
Total	0.18	0.11	0.17	0.23	0.51	0.19
Statistical	3.15	4.20	3.27	4.20	4.75	5.44

Table 3. Systematic uncertainty summary. All values are quoted in units of 10^{-2} .

JHEP 02, 063 (2022)

LHCb combination of UT angle γ

B decay	D decay	Dataset	Status since last combination
$B^{\pm} \to Dh^{\pm}$	$D \rightarrow h^+ h^-$	Run 1&2	Updated
$B^{\pm} \to Dh^{\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	Run 1	As before
$B^{\pm} \to Dh^{\pm}$	$D \to h^+ h^- \pi^0$	Run 1	As before
$B^{\pm} \to Dh^{\pm}$	$D \to K_{\rm S}^0 h^+ h^-$	Run $1\&2$	Updated
$B^{\pm} \to Dh^{\pm}$	$D \to K^0_{\rm S} K^{\pm} \pi^{\mp}$	Run $1\&2$	Updated
$B^{\pm} \to D^* h^{\pm}$	$D \rightarrow h^+ h^-$	Run $1\&2$	Updated
$B^{\pm} \to DK^{*\pm}$	$D \rightarrow h^+ h^-$	Run $1\&2(*)$	As before
$B^{\pm} \to DK^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	Run $1\&2(*)$	As before
$B^{\pm} \rightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D \rightarrow h^+ h^-$	Run 1	As before
$B^0 \to DK^{*0}$	$D \rightarrow h^+ h^-$	Run $1\&2(*)$	Updated
$B^0 \to DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	Run $1\&2(*)$	New
$B^0 \to DK^{*0}$	$D \to K_{\rm S}^0 \pi^+ \pi^-$	Run 1	As before
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$	Run 1	As before
$B_s^0 \to D_s^{\mp} K^{\pm}$	$D_s^+ \to h^+ h^- \pi^+$	Run 1	As before
$B_s^0 \to D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ \to h^+ h^- \pi^+$	Run 1&2	New
	$D^0 \to h^+ h^-$	Run 1&2	New
	$D^0 \to h^+ h^-$	Run 1	New
	$D^0 \to h^+ h^-$	Run $1\&2$	New
	$D^0 \to K^+ \pi^-$ (Single Tag)	Run 1	New
	$D^0 \to K^+ \pi^-$ (Double Tag)	Run $1\&2(*)$	New
	$D^0 \to K^{\pm} \pi^{\mp} \pi^+ \pi^-$	Run 1	New
	$D^0 \to K^0_S \pi^+ \pi^-$	Run 1	New
	$D^0 \rightarrow K_{\rm S}^{ m o} \pi^+ \pi^-$	Run 1	New
	$D^0 ightarrow K^{ m o}_{ m S} \pi^+ \pi^-$	$\operatorname{Run} 2$	\mathbf{New}

JHEP 12 (2021) 141

External inputs to the combination

Decay	Parameters	Source
$B^{\pm} \rightarrow DK^{*\pm}$	$\kappa_{B^\pm}^{DK^{st\pm}}$	LHCb
$B^0 \to DK^{*0}$	$\kappa^{DK^{st 0}}_{B^0}$	LHCb
$B^0 \to D^{\mp} \pi^{\pm}$	eta	HFLAV
$B^0_s ightarrow D^{\mp}_s K^{\pm}(\pi\pi)$	ϕ_s	HFLAV
$D \to h^+ h^- \pi^0$	$F^+_{\pi\pi\pi^0}, F^+_{K\pi\pi^0}$	CLEO-c
$D \to \pi^+\pi^-\pi^+\pi^-$	$F_{4\pi}^+$	CLEO-c
$D \to K^+ \pi^- \pi^0$	$r_D^{K\pi\pi^0},\delta_D^{K\pi\pi^0},\kappa_D^{K\pi\pi^0}$	CLEO-c+LHCb+BESIII
$D \to K^\pm \pi^\mp \pi^+ \pi^-$	$r_D^{K3\pi},\delta_D^{K3\pi},\kappa_D^{K3\pi}$	CLEO-c+LHCb+BESIII
$D \to K^0_{\rm S} K^\pm \pi^\mp$	$r_D^{K^0_{\mathrm{S}}K\pi},\delta_D^{K^0_{\mathrm{S}}K\pi},\kappa_D^{K^0_{\mathrm{S}}K\pi}$	CLEO
$D \to K^0_{ m S} K^\pm \pi^\mp$	$r_D^{K_{ m S}^0K\pi}$	LHCb

|--|

Roberta Cardinale on behalf of the LHCb Collaboration Moriond EW 2022

γ using $B^{\pm} \rightarrow Dh^{\pm} (D \rightarrow h^{+}h^{'\pm}\pi^{0})$ by LHCb

$$R_K^{\mp} \equiv \frac{\Gamma(B^{\mp} \to [\pi^{\mp} K^{\pm} \pi^0]_D K^{\mp})}{\Gamma(B^{\mp} \to [K^{\mp} \pi^{\pm} \pi^0]_D K^{\mp})},$$
$$R_\pi^{\mp} \equiv \frac{\Gamma(B^{\mp} \to [\pi^{\mp} K^{\pm} \pi^0]_D \pi^{\mp})}{\Gamma(B^{\mp} \to [K^{\mp} \pi^{\pm} \pi^0]_D \pi^{\mp})}.$$

$$A_{K}^{hh\pi^{0}} = \frac{\Gamma(B^{-} \to [hh\pi^{0}]_{D}K^{-}) - \Gamma(B^{+} \to [hh\pi^{0}]_{D}K^{+})}{\Gamma(B^{-} \to [hh\pi^{0}]_{D}K^{-}) + \Gamma(B^{+} \to [hh\pi^{0}]_{D}K^{+})}$$

$$A_{\pi}^{hh\pi^{0}} = \frac{\Gamma(B^{-} \to [hh\pi^{0}]_{D}\pi^{-}) - \Gamma(B^{+} \to [hh\pi^{0}]_{D}\pi^{+})}{\Gamma(B^{-} \to [hh\pi^{0}]_{D}\pi^{-}) + \Gamma(B^{+} \to [hh\pi^{0}]_{D}\pi^{+})}$$

$$R^{KK\pi^{0}} = R^{KK\pi^{0}}_{K/\pi} / R^{K\pi\pi^{0}}_{K/\pi}, \qquad \qquad R^{\pi\pi\pi^{0}} = R^{\pi\pi\pi^{0}}_{K/\pi} / R^{K\pi\pi^{0}}_{K/\pi},$$

$$R^{hh\pi^{0}}_{K/\pi} = \frac{\Gamma(B^{-} \to [hh\pi^{0}]_{D}K^{-}) + \Gamma(B^{+} \to [hh\pi^{0}]_{D}K^{+})}{\Gamma(B^{-} \to [hh\pi^{0}]_{D}\pi^{-}) + \Gamma(B^{+} \to [hh\pi^{0}]_{D}\pi^{+})}$$

$$A_K^{K\pi\pi^0} = \frac{\Gamma(B^- \to [K^-\pi^+\pi^0]_D K^-) - \Gamma(B^+ \to [K^+\pi^-\pi^0]_D K^+)}{\Gamma(B^- \to [K^-\pi^+\pi^0]_D K^-) + \Gamma(B^+ \to [K^+\pi^-\pi^0]_D K^+)}$$

$$R_{\text{ADS}(h)} = \frac{\Gamma(B^- \to [\pi^- K^+ \pi^0]_D h^-) + \Gamma(B^- \to [\pi^- K^+ \pi^0]_D h^-)}{\Gamma(B^- \to [K^- \pi^+ \pi^0]_D h^-) + \Gamma(B^- \to [K^- \pi^+ \pi^0]_D h^-)}$$

$$A_{\text{ADS}(h)} = \frac{\Gamma(B^- \to [\pi^- K^+ \pi^0]_D h^-) - \Gamma(B^- \to [\pi^- K^+ \pi^0]_D h^-)}{\Gamma(B^- \to [\pi^- K^+ \pi^0]_D h^-) + \Gamma(B^- \to [\pi^- K^+ \pi^0]_D h^-)}$$

where the first uncertainties are statistical and the second are systematic. The four R_h^{\pm} observables can be used to calculate

The results for the ADS observables are more precise than those obtained by previous experiments and are compatible with them.

The results for the observables, as determined by the fit, are

arXiv:2112.10617 submitted to JHEP

$R^{KK\pi^0}$	—	1.021	\pm	0.079	\pm	0.005
$R^{\pi\pi\pi^0}$	=	0.902	\pm	0.041	\pm	0.004
$A_K^{K\pi\pi^0}$	=	-0.024	\pm	0.013	\pm	0.002
$A_K^{KK\pi^0}$	_	0.067	\pm	0.073	\pm	0.003
$A_K^{\pi\pi\pi^0}$	—	0.109	\pm	0.043	\pm	0.003
$A_{\pi}^{KK\pi^0}$	—	-0.001	\pm	0.019	\pm	0.002
$A_{\pi}^{\pi\pi\pi^{0}}$	—	0.001	\pm	0.010	\pm	0.002
R_K^+	=	0.0179	\pm	0.0024	\pm	0.0003
R_K^-	=	0.0085	\pm	0.0020	\pm	0.0004
R_{π}^+	=	0.00188	\pm	0.00027	\pm	0.00005
R_{π}^{-}	=	0.00227	\pm	0.00028	\pm	0.00004,

$R_{ADS(K)}$	=	0.0127	\pm	0.0016	\pm	0.0002
$A_{\mathrm{ADS}(K)}$	—	-0.38	\pm	0.12	\pm	0.02
$R_{ADS(\pi)}$	=	0.00207	\pm	0.00020	\pm	0.00003
$A_{ADS(\pi)}$	=	0.069	\pm	0.094	\pm	0.016,

Belle II and SuperKEKB

SuperKEKB e^+e^- collider achieves higher instant luminosity using so-called nano beam scheme.

- ► Goal: $L = 6 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ $(30 \times \text{Belle})$
- Achieved: $3.8 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ World record!

Belle II: all sub-detectors underwent a major upgrade from Belle, improving performance in spite of higher beam background, e.g.:

- \Rightarrow Enhanced K/π separation
- \Rightarrow Improved vertex resolution (more later...)

The SKB/Belle II program

- Phase 1(2016): no detector, no collision, test the rings
- Phase 2 (2018): first collisions with complete accelerator
 - Incomplete detector: Vertex detector replaced by dedicated background detector (Beast 2)
- Phase 3 (2019-): luminosity run with complete detector Pixel Detector (PXD): layer 1 + only 2 ladders in layer 2

 - Full 4-layers strip detector (SVD)
 - First physics paper appeared in January 2020 ٠
- New and difficult accelerator. Additional operational complexity during the pandemic.
- Record peak luminosity 3.81×10^{34} cm⁻²s⁻¹.
- Path to reach 2×10^{35} cm⁻²s⁻¹ identified.
- Still large factors to reach the target peak luminosity of $6.5 \times 10^{35} \text{cm}^{-2}\text{s}^{-1}$.

Feb 23, 2022

Short term luminosity projections

- Base scenario: conservative extrapolation of SKB parameters from 2021
- Target scenario: extrapolation including possible improvement during LS1
- LS1 starts in summer 2022 for 15 months to replace VXD. There will be other maintenance/improvement work on machine and detector.
- We resume machine operation from fall 2023.
- An International Taskforce (aiming to) conclude in summer 2022) is discussing additional improvements.

Int. Lumi (Delivered)

The LHCb experiment

• LHCb is a forward spectrometer, operating at LHC ($\sqrt{s} = 13$ TeV) ^O High geometrical efficiency in collecting $b\bar{b}$ and $c\bar{c}$ quark pairs O Excellent time resolution, momentum resolution, PID performances

[JINST 3 S08005] [Int. J. Mod. Phys. A 30 (2015)1530022]

Prospects on isospin sum rule

Prospects on on UT angle γ by LHCb

Figure 4.1: Extrapolation of γ sensitivity from the ADS/GLW analyses where disfavoured ambiguities are ignored. The expected Belle II γ precision at an integrated luminosity of 50 ab^{-1} is shown by the horizontal grey lines.

> Figure 4.3: Expected evolution of γ sensitivity with the GGSZ method with (red crosses) current CLEO inputs and with (blue \times -marks) \sqrt{N} improvements on their uncertainty.

LHCb upgrade II physics case

CP asymmetry in semileptonic **B** decays

Table 5.1: Current theoretical and experimental determinations of the semileptonic asymmetries $a_{\rm sl}^d$ and $a_{\rm sl}^s$.

	Sar	mple (\mathcal{L}	
_	Ru	n 1 (3 :	$fb^{-1})$ [21]
	Ru	n 1-3 (2	23 fb^{-1})
	Ru	n 1-3 (S	50 fb^{-1}
	Ru	n 1-5 (3	300 fb^{-1}
_	Cu	rrent th	neory [34]
_			
	30	r	
	25	68% C	L. contours
	20	-	
	15	-	
	10	-	
	5	-	
	0		
$a_{\rm sl}^{\rm v}$	-5	-	I UCh Dun
	-10	-	
	-15	-	BaBar+Bel
	-20		D0 A
	-25		μ
	-30	20 70	

of which is barely visible with these axes.

Figure 5.2: Current and future landscape for the semileptonic asymmetries. The grey vertical band indicates the current B-Factory average for $a_{\rm sl}^d$ [25]. The blue ellipse represents the current LHCb Run 1 measurements [210, 211]. The red ellipse, which is arbitrarily centred, delineates the Upgrade II projected precision. The black ellipse shows the SM prediction, the uncertainty

