CP violation in B mesons

Daniele Manuzzi on behalf of the LHCb collaboration, with results from Belle and Belle II collaborations

Today

- Introduction
- Recent results by LHCb, Belle and Belle II
- Measurements of CKM phase $\gamma \equiv \phi_{3}$
- Update on $B \rightarrow K \pi$ puzzle
- $C P$ in B decays to charmless resonances and multi-body final states
- Some prospects

Generalities

- The matter-antimatter asymmetry of the universe requires

CP sources not predicted by the Standard Model

- CP manifests due to interference
of quantum processes

Where do we observe CP phenomena?

	CP category	K^{0}	Hadronic system									
0 Observed			$K^{ \pm}$	Λ			D				B_{s}^{0}	Λ_{b}^{0}
Several observations	decay	(\star		Q	\times	*	*	\bigcirc	\bigcirc	(${ }^{\star}$
$\boldsymbol{\otimes}$ Not observed (yet)	mixing	0	-		\star	-	-	-	\pm		\star	-
	decay/mixing interf.	\bigcirc			\star				8		0	

Testing the SM with CP: the UT

- The SM encodes the CP phenomena with a single complex phase in the CKM matrix
- The CKM matrix is unitary

$$
\begin{aligned}
& V^{+} V=\left(\begin{array}{ccc}
V_{u d}^{*} & V_{c d}^{*} & V_{t d}^{*} \\
V_{u s}^{*} & V_{c s}^{*} & V_{t s}^{*} \\
V_{u b}^{*} & V_{c b}^{*} & V_{t b}^{*}
\end{array}\right)\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \frac{V_{u b}^{*} V_{u d}}{V_{c b}^{*} V_{c d}} \\
& V_{u b}^{*} V_{u d}+V_{c b}^{*} V_{c d}+V_{t b}^{*} V_{t d}=0
\end{aligned}
$$

Updates to the Unitary Triangle global fits tomorrow! talk by M. Valli from the UTFit collaboration

The UT angle γ

- Measured in tree-level decays sensitive to interference between the favoured $b \rightarrow c W$
 and the suppressed $b \rightarrow u W$ decay amplitudes
- Golden mode: $B^{ \pm} \rightarrow D K^{ \pm}$
- Several time-independent modes
- $\quad B^{ \pm} \rightarrow D^{(*)} h^{(*)}$ with D mixture
of D^{0} and \bar{D}^{0} decaying to same f_{D}

- Time-dependent (mixing/decay interf.)
$\circ B^{0} \rightarrow D^{\mp} \pi^{ \pm}$
\circ
\circ
$B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}$

$$
\frac{\mathscr{A}^{\text {suppr. }}\left(B^{-} \rightarrow \bar{D}^{0} K^{-}\right)}{\mathscr{A}^{\text {favor. }}\left(B^{-} \rightarrow D^{0} K^{-}\right)}=r_{B} e^{i\left(\delta_{B}-\gamma\right)}
$$

γ using $B^{ \pm} \rightarrow D h^{+}\left(D \rightarrow K_{s}^{0} h^{+} h^{-}\right)$by Belle + Belle Il

- $h \in\{\pi, K\}$
- Joint data sample:
- $711 \mathrm{fb}^{-1}$ from Belle
- $128 \mathrm{fb}^{-1}$ from Belle II
- Improvements wrt previous Belle
- K_{s}^{0} selection, bkg. suppression, sig. determination, more stat. from $D^{0} \rightarrow K_{s}^{0} K^{+} K^{-}$
- Model independent: analysis performed in Dalitz bins, using

$$
\mathrm{N}_{i}^{ \pm}=\mathrm{h}_{\mathrm{B}}^{ \pm}\left[\mathrm{F}_{i}+\mathrm{r}_{\mathrm{B}}{ }^{2} \overline{\mathrm{~F}}_{i}+2 \sqrt{\mathrm{~F}_{i} \overline{\mathrm{~F}}_{i}}\left(\mathrm{c}_{i} x_{ \pm}+\mathrm{s}_{i} y_{ \pm}\right)\right]
$$

$\left(x_{ \pm}, y_{ \pm}\right)=r_{\mathrm{B}}\left(\cos \left(\gamma+\delta_{\mathrm{B}}\right), \sin \left(\gamma+\delta_{\mathrm{B}}\right)\right)$
$c_{i}, s_{i}: D^{0}-\overline{D^{0}}$ strong phase differences
(inputs from BES III/CLEO)
F_{i} : fraction of D decays to i-th bin

γ using $B^{ \pm} \rightarrow D h^{+}\left(D \rightarrow K_{s}^{0} h^{+} h^{-}\right)$by Belle + Belle Il

JHEP 02, 063 (2022)

JHEP 02, 063 (2022)

$$
\begin{aligned}
\gamma \equiv \phi_{3} & =(78.4 \pm 11.4 \pm 0.5 \pm 1.0)^{\circ} \\
r_{B}^{D K} & =0.129 \pm 0.024 \pm 0.001 \pm 0.002 \\
\delta_{B}^{D K} & =(124.8 \pm 12.9 \pm 0.5 \pm 1.7)^{\circ} \\
r_{B}^{D \pi} & =0.017 \pm 0.006 \pm 0.001 \pm 0.001 \\
\delta_{B}^{D \pi} & =(341.0 \pm 17.0 \pm 1.2 \pm 2.6)^{\circ}
\end{aligned}
$$

- Improvement wrt previous Belle equivalent to doubling statistics - Latest inputs from BESIII highly reduced systematics

Most precise determination from B factories (first Belle+Bellle2)

LHCb combination of UT angle γ

- New: combination of results from beauty and charm sectors
- Correlation between y_{D} and $\delta_{D}^{K \pi}$ in $D^{0} \rightarrow K^{ \pm} \pi^{\mp}$
- D mixing affects $B^{ \pm} \rightarrow D \pi^{ \pm}$

- Frequentist approach

- 151 observables, 52 unknowns
- External constraints: see backup

MOST PRECISE DETERMINATION BY A SINGLE EXPERIMENT agreement with indirect global
CKM fitters
Stat. dominated
factor 2 improvement wrt previous W.A.

8

γ using $B^{ \pm} \rightarrow D h^{ \pm}\left(D \rightarrow h^{+} h^{\prime \pm} \pi^{0}\right)$ by LHCb

- Study 8 final states

Mode $\left(h^{-}=\left\{\pi^{-}, K^{-}\right\}\right)$	Analysis type
$B^{-} \rightarrow\left[K^{-} \pi^{+} \pi^{0}\right]_{D} h^{-}$	quasi-ADS (fav.)
$B^{-} \rightarrow\left[\pi^{-} K^{+} \pi^{0}\right]_{D} h^{-}$	quasi-ADS (sup.)
$B^{-} \rightarrow\left[K^{-} K^{+} \pi^{0}\right]_{D} h^{-}$	quasi-GLW
$B^{-} \rightarrow\left[\pi^{-} \pi^{+} \pi^{0}\right]_{D} h^{-}$	quasi-GLW

- Discovery of

$$
B^{-} \rightarrow\left[\pi^{-} K^{+} \pi^{0}\right]_{D} K^{-}(7.8 \sigma!)
$$

- Simultaneous invariant-mass fit to 16 sub-samples

Dataset: full Run1+Run2 ($9 \mathrm{fb}^{-1}$)

- Fit performed to 11 CP observables (ratios $R_{n}^{ \pm} /$asym. $A_{h}^{\text {Ahh }}{ }^{0}$) with world best precision
- Interpret in terms of $\gamma, r_{B}, \delta_{B}$
- Global minimum

$$
\gamma=\left(145_{-39}^{+9}\right)^{\circ}
$$

- Second solution consistent with LHCb γ combination

Results:

$$
\begin{aligned}
& \delta_{B}=\left(122_{-23}^{+19}\right)^{\circ} \\
& r_{B}=\left(9.3_{-0.9}^{+1.0}\right)^{\circ}
\end{aligned} \quad \gamma=\left(56_{-19}^{+24}\right)^{\circ}
$$

BR and $C P$ in $B \rightarrow \bar{D}^{0} \pi$ decays

- $\bar{D}^{0} \rightarrow K^{+} \pi^{-}, K^{+} \pi^{-} \pi^{0}$

- Motivations:

- The measured $\mathbf{B R}\left(B^{0} \rightarrow \bar{D}^{0} \pi^{0}\right)$
is $\times 4$ theory predictions PhysRevD. 82.074007
- Large CP would be hint of new physics
- Control mode for rare charmless B decays
- Full Belle data sample $\left(711 \mathrm{fb}^{-1}\right)$

Results:

Most precise

$$
\begin{aligned}
& \mathcal{A}_{C P}\left(B^{+} \rightarrow \bar{D}^{0} \pi^{+}\right)=(0.19 \pm 0.36 \pm 0.57) \% \\
& \mathcal{B}\left(B^{+} \rightarrow \bar{D}^{0} \pi^{+}\right)=(4.53 \pm 0.02 \pm 0.15) \times 10^{-3}
\end{aligned}
$$

Time dependent $C P$ in $B \rightarrow K_{S} K_{S} K_{S}$ by Belle

- Penguin topology
- The SM predicts:
$S=-\sin (2 \beta)$ and $A=0$

- Full Belle dataset $\left(711 \mathrm{fb}^{-1}\right)$
- Selection with NN (dominant bkg: $\left.e^{+} e^{-} \rightarrow q \bar{q}\right)$
- Veto for charmed resonances
- Fit strategy:

1) fit to $M_{b c}, \Delta E$, NN output variable, to get sig. and bkg yields
2) fit to Δt for time dependent $C P$ parameters

Results:

$$
\begin{aligned}
\mathcal{S} & =-0.71 \pm 0.23(\text { stat }) \pm 0.05(\text { syst }) \\
\mathcal{A} & =0.12 \pm 0.16(\text { stat }) \pm 0.05(\text { syst })
\end{aligned}
$$

The long-standing $B \rightarrow K \pi$ puzzle:

\bullet Isospin relations $\rightarrow A_{C P}\left(B^{+} \rightarrow K^{+} \pi^{0}\right)-A_{C P}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=0$

- The experimental state of the art is:

- Is it due to strong phases and amplitudes or is new physics emerging from the loops?
- Full $B \rightarrow K \pi$ puzzle sum rule [PLB627(2005)82]:
$A_{C P}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)+A_{C P}\left(B^{+} \rightarrow K^{0} \pi^{+}\right) \frac{\mathbf{B}\left(B^{+} \rightarrow K^{0} \pi^{+}\right)}{\mathbf{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)} \frac{\tau^{0}}{\tau^{+}}=A_{C P}\left(B^{+} \rightarrow K^{+} \pi^{0}\right) \frac{2 \mathbf{B}\left(B^{+} \rightarrow K^{+} \pi^{0}\right)}{\mathbf{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)} \frac{\tau^{0}}{\tau^{+}}+A_{C P} \frac{\left(B^{0} \rightarrow K^{0} \pi^{0}\right)}{\frac{2 \mathbf{B}\left(B^{0} \rightarrow K^{0} \pi^{0}\right)}{\mathbf{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)} \frac{\tau^{0}}{\tau^{+}}}$

$C P$ in $B^{0} \rightarrow K_{s}^{0} \pi^{0}$ decays by Belle II

- Perform a 4D fit to $\Delta E, M_{b c}, \Delta t$, and continuumsuppression output
- $B^{0} \rightarrow J / \psi\left(\mu^{+} \mu^{-}\right) K_{S}^{0}$ used as a control sample. Measured lifetime and ACP consistent with know values.
- Wrong-tag fraction measured from mixing measurements using $B^{0} \rightarrow D^{(*)} h$ decays
- Limited sample size: constrain $S_{C P}$ using previous measurements to maximise precision in $A_{C P}$
talk by
Chunhui Chen $\stackrel{\stackrel{y}{4}}{3}$ this morning

Results:

$$
\begin{gathered}
A_{C P}\left(B^{0} \rightarrow K_{S}^{0} \pi^{0}\right)=-0.41_{-0.30}^{+0.32}(\text { stat. }) \pm 0.09(\text { syst. }) \\
\left.\quad \mathbf{B}\left(B^{0} \rightarrow K_{S}^{0} \pi^{0}\right)=(11.0 \pm 1.2 \text { (stat. }) \pm 1.0(\text { syst. })\right) \times 10^{-6}
\end{gathered}
$$

World average: $A_{C P}\left(B^{0} \rightarrow K_{S}^{0} \pi^{0}\right)=0.00 \pm 0.13$

[^0]
Direct $C \neq$ in $B^{ \pm} \rightarrow h^{ \pm} h^{+} h^{-}$by LHCb

- Prequels:
- Evidence of global direct CPV and high localised CP asymmetries across the Dalitz plot in charmless 3-body B decay [PRDgo(2014)112004]
- Amplitude analysis of $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$: large CP related to S- and P-wave interference [PRL124(2020)031801, PRD101(2020)012006]
- Amplitude analysis of $B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-}$: CP connected to $\pi \pi \leftrightarrow K K$ rescattering [PRL123 (2019) 231802] [Prog. Part. Nucl. Phys. 114 (2020) 103808]

- Analysis using Run2 data ($5.9 \mathrm{fb}^{-1}$)

\circ Measurement of $C P$ in the decay for $\left\{\begin{array}{lll}B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-} & B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-} \\ B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-} & B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}\end{array}\right.$ - phase-space integrated

- depending on the regions of the phase space
- Measurement of CP asymmetry in $B \rightarrow P V$ decays

Global $C P$ in $B^{ \pm} \rightarrow h^{ \pm} h^{+} h^{-}$

- Simultaneous invariant mass fit to B^{+} / B^{-} to extract raw asymmetries

Results:
$\begin{array}{rl}A_{C P}\left(B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}\right) & =+0.011 \pm 0.002 \pm 0.003 \pm 0.003 \\ A_{C P}\left(B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}\right) & =-0.037 \pm 0.002 \pm 0.002 \pm 0.003 \\ A_{C P}\left(B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}\right) & =+0.080 \pm 0.004 \pm 0.003 \pm 0.003 \\ A_{C P}\left(B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-}\right) & =-0.114 \pm 0.007 \pm 0.003 \pm 0.003\end{array} 1^{\text {st }}$ obs. (8.5 $)$ obs. (14σ)
(2.4б)
$1^{\text {st }}$ obs. (8.5 σ) $1^{\text {st }}$ obs. (14б)
$1^{\text {st }}$ obs. (14 σ)

$C P$ asymmetry: phase space

- Measurement of $A_{C P}$ in bins of the phase space, using an adaptive binning and taking into account acceptance correction

Rich pattern of high localised asymmetries!

$C P$ asymmetry: phase space

- Significant $C P$ in the $\pi \pi \leftrightarrow K K$ rescattering region $\rightarrow m^{2} \in[1,2.25] \mathrm{GeV}^{2} / \mathrm{c}^{4}$ seen in all four channels

- Few measurements $B \rightarrow P V$ decays in the literature and huge theoretical interest
- Large phase space available: different interfering resonant intermediate amplitudes
- Simplified method to extract $A_{C P}$
- Valid for low-mass resonant amplitudes [PRD94(2016)054028]

$$
s_{\perp} \equiv m^{2}\left(K^{ \pm} \pi^{\mp}\right)\left[\mathrm{GeV}^{2} / c^{4}\right]
$$

$$
B \rightarrow R\left(\rightarrow h_{1}^{-} h_{2}^{+}\right) h_{3}^{+}
$$

$$
\begin{gathered}
\left|\mathcal{M}_{ \pm}\right|^{2}=p_{0}^{ \pm}+p_{1}^{ \pm} \cos \theta\left(s_{\perp}, m_{v}^{2}\right)+p_{2}^{ \pm} \cos ^{2} \theta\left(s_{\perp}, m_{v}^{2}\right) \\
\quad \text { where } s_{\perp} \equiv m^{2}\left(h_{1}^{-} h_{3}^{+}\right) \text {and } \theta \equiv \text { helicity angle }
\end{gathered} \quad A_{\mathrm{CP}}^{V}=\frac{p_{2}^{-}-p_{2}^{+}}{p_{2}^{-}-p_{2}^{+}}
$$

Decay channel	$A_{C P} \pm \sigma_{\text {stat }} \pm \sigma_{\text {syst }}$
$B^{ \pm} \rightarrow\left(\rho(770)^{0} \rightarrow \pi^{+} \pi^{-}\right) \pi^{ \pm}$	$-0.004 \pm 0.017 \pm 0.009$
$B^{ \pm} \rightarrow\left(\rho(770)^{0} \rightarrow \pi^{+} \pi^{-}\right) K^{ \pm}$	$+0.150 \pm 0.019 \pm 0.011$
$B^{ \pm} \rightarrow\left(\bar{K}^{)} *(892)^{0} \rightarrow K^{ \pm} \pi^{\mp}\right) \pi^{ \pm}$	$-0.015 \pm 0.021 \pm 0.012$
$B^{ \pm} \rightarrow\left(\bar{K}^{)} *(892)^{0} \rightarrow K^{ \pm} \pi^{\mp}\right) K^{ \pm}$	$+0.007 \pm 0.054 \pm 0.032$
$B^{ \pm} \rightarrow\left(\phi(1020) \rightarrow K^{+} K^{-}\right) K^{ \pm}$	$+0.004 \pm 0.010 \pm 0.007$

$C P$ in $B^{ \pm} \rightarrow \rho^{ \pm} \rho^{0}$ decays by Belle II

- Motivation: CKM angle α measurable through combination of:

$$
B^{0} \rightarrow \rho^{0} \rho^{0}, B^{0} \rightarrow \rho^{+} \rho^{-}, B^{+} \rightarrow \rho^{+} \rho^{0}
$$

- To do that, measure direct $C P$ in decays where ρ^{+}and ρ^{0} are longitudinally polarised, need:
- Longitudinal polarisation fraction $\left(f_{L}\right)$
\rightarrow measure $\pi^{ \pm}$helicity angles
- Asymmetry in rate $B^{+} \rightarrow \rho^{+} \rho^{0}$ vs. $B^{-} \rightarrow \rho^{-} \rho^{0}$

CP due to interference between tree and penguin

$C P$ in $B^{ \pm} \rightarrow \rho^{ \pm} \rho^{0}$ decays by Belle II

- Large bkg. from: $e^{+} e^{-} \rightarrow u \bar{u}, d \bar{d}, c \bar{c}, s \bar{s}$
- Reduced with MVA
- 6D templates fit taking considering correlations in
n
talk by
- Templates from MC, calibrated using control channels
- Instrumental asymmetry measured with $D^{+} \rightarrow K_{s}^{0} \pi^{+}$ - $A_{\text {det }}=(0.4 \pm 0.5) \%$

Chunhui Chen this morning

Result compatible with previous measurements:

$$
\begin{aligned}
& A_{C P}\left(B^{+} \rightarrow \rho^{+} \rho^{0}\right)=-0.069 \pm 0.068(\text { stat }) \pm 0.060(\text { syst. }) \\
& \quad \mathbf{B}\left(B^{+} \rightarrow \rho^{+} \rho^{0}\right)=\left(23.2_{2.1}^{+2.2}(\text { stat. }) \pm 2.7(\text { syst. })\right) \times 10^{-6} \\
& \quad f_{L}=0.943_{-0.033}^{+0.035}(\text { stat. }) \pm 0.027(\text { syst. }) \\
& \text { World average: } A_{C P}\left(B^{+} \rightarrow \rho^{+} \rho^{0}\right)=-0.05 \pm 0.05
\end{aligned}
$$

- Belle II performance superior to Belle.
- Systematic uncertainties mainly data-driven, expect to be reduced with more data.

$\cos \theta_{\rho^{+}}$

$C P$ search in $B^{0} \rightarrow p \bar{p} K^{+} \pi^{-}$decays

- Promising process to observe for the first time $C P$ in B decays to final states with half-spin particles ${ }_{\text {Eur.Phys., } . \mathrm{c} \text { (} 2020) \text { 80:565] }}$
- Search for P and $C P$ violation using triple-product asymmetries
- \hat{T}-odd observables:

$$
C_{\hat{T}}=\vec{p}_{K^{+}} \cdot\left(\vec{p}_{\pi^{-}} \times \vec{p}_{p}\right) \quad \bar{C}_{\hat{T}}=\vec{p}_{K^{-}} \cdot\left(\vec{p}_{\pi^{+}} \times \vec{p}_{\vec{p}}\right)
$$

o Asymmetries:

$$
A_{\hat{T}}=\frac{N\left(C_{\hat{T}}>0\right)-N\left(C_{\hat{T}}<0\right)}{N\left(C_{\hat{T}}>0\right)+N\left(C_{\hat{T}}<0\right)}, \quad \bar{A}_{\hat{T}}=\frac{\bar{N}\left(-\bar{C}_{\hat{T}}>0\right)-\bar{N}\left(-\bar{C}_{\hat{T}}<0\right)}{\bar{N}\left(-\bar{C}_{\hat{T}}>0\right)+\bar{N}\left(-\bar{C}_{\hat{T}}<0\right)}
$$

- P and $C P$ observables: $a_{P}^{\hat{T} \text {-odd }}=\frac{1}{2}\left(A_{\hat{T}}+\bar{A}_{\hat{T}}\right) \quad a_{C P}^{\hat{T} \text {-odd }}=\frac{1}{2}\left(A_{\hat{T}}-\bar{A}_{\hat{T}}\right)$
b-hadron production asymmetries

$C P$ search in $B^{0} \rightarrow p \bar{p} K^{+} \pi^{-}$decays

- Measurements:
- integrated over the full phase space

$$
\begin{array}{ll}
a_{P}^{\hat{T} \text {-odd }}=(1.49 \pm 0.85 \pm 0.08) \% & \begin{array}{l}
\text { NO evidence of } \\
\\
a_{C P}^{\hat{T} \text {-odd }}=(0.51 \pm 0.85 \pm 0.08) \%,
\end{array}
\end{array}
$$

- bins of the phase space enhance sensitivity
$C P$ conservation at 1σ
P violation at 6σ
- Improvements are expected for Run3
- Higher Luminosity and trigger eff.

Some Prospects

Belle II

LHCb

Future potential for the UT

CKMFitter Website
Assumptions:

- current central values
- improvements on lattice

EXPECTED UNCERTAINTIES

Observable	LHCb $50 \mathrm{fb}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$	$\mathrm{LHCb}+$Belle II $300 \mathrm{fb}^{-1}$ $250 \mathrm{ab}^{-1}$	
$\alpha \equiv \phi_{2}$		0.6°	0.3°	Belle II Physics Program White Paper
$\sin 2 \beta \equiv \sin 2 \phi_{1}$	0.006	0.005	<0.002	Belle II Detector Upgrade Program
$\gamma \equiv \phi_{3}$	1.5°	1.5°		$<0.35^{\circ}$

Backup

γ using $B^{ \pm} \rightarrow D h^{+}\left(D \rightarrow K_{s}^{0} h^{+} h^{-}\right)$by Belle + Belle II

Source	$\sigma_{x_{+}^{D K}}$	$\sigma_{y_{+}^{D K}}$	$\sigma_{x_{-}^{D K}}$	$\sigma_{y_{-}^{D K}}$	$\sigma_{x_{\xi}^{D \pi}}$	$\sigma_{y_{\xi}^{D \pi}}$
Input c_{i}, s_{i}	0.22	0.55	0.23	0.67	0.73	0.82
PDF parametrisation	0.07	0.08	0.12	0.16	0.12	0.12
PID	<0.01	<0.01	<0.01	0.01	<0.01	<0.01
Peaking background	0.03	0.05	0.03	0.04	0.02	0.10
Fit bias	0.16	0.06	0.12	0.16	0.49	0.10
Bin migration	<0.01	<0.01	<0.01	<0.01	<0.01	0.03
Total	0.18	0.11	0.17	0.23	0.51	0.19
Statistical	3.15	4.20	3.27	4.20	4.75	5.44

Table 3. Systematic uncertainty summary. All values are quoted in units of 10^{-2}.

LHCb combination of UT angle γ

B decay	D decay	Dataset	Status since last combination
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow h^{+} h^{-}$	Run $1 \& 2$	Updated
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow h^{+} \pi^{-} \pi^{+} \pi^{-}$	Run 1	As before
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow h^{+} h^{-} \pi^{0}$	Run 1	As before
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow K_{\mathrm{S}}^{0} h^{+} h^{-}$	Run $1 \& 2$	Updated
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow K_{\mathrm{S}}^{0} K^{ \pm} \pi^{\mp}$	Run $1 \& 2$	Updated
$B^{ \pm} \rightarrow D^{*} h^{ \pm}$	$D \rightarrow h^{+} h^{-}$	Run $1 \& 2$	Updated
$B^{ \pm} \rightarrow D K^{* \pm}$	$D \rightarrow h^{+} h^{-}$	Run $1 \& 2\left(^{*}\right)$	As before
$B^{ \pm} \rightarrow D K^{* \pm}$	$D \rightarrow h^{+} \pi^{-} \pi^{+} \pi^{-}$	Run $\left.1 \& 22^{*}\right)$	As before
$B^{ \pm} \rightarrow D h^{ \pm} \pi^{+} \pi^{-}$	$D \rightarrow h^{+} h^{-}$	Run 1	As before
$B^{0} \rightarrow D K^{* 0}$	$D \rightarrow h^{+} h^{-}$	Run $1 \& 2\left(^{*}\right)$	Updated
$B^{0} \rightarrow D K^{* 0}$	$D \rightarrow h^{+} \pi^{-} \pi^{+} \pi^{-}$	Run $1 \& 2\left(^{*}\right)$	New
$B^{0} \rightarrow D K^{* 0}$	$D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$	Run 1	As before
$B^{0} \rightarrow D^{\mp} \pi^{ \pm}$	$D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$	Run 1	As before
$B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}$	$D_{s}^{+} \rightarrow h^{+} h^{-} \pi^{+}$	Run 1	As before
$B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm} \pi^{+} \pi^{-}$	$D_{s}^{+} \rightarrow h^{+} h^{-} \pi^{+}$	Run $1 \& 2$	New
	$D^{0} \rightarrow h^{+} h^{-}$	Run $1 \& 2$	New
	$D^{0} \rightarrow h^{+} h^{-}$	Run 1	New
	$D^{0} \rightarrow h^{+} h^{-}$	Run $1 \& 2$	New
	$D^{0} \rightarrow K^{+} \pi^{-}($Single Tag $)$	Run 1	New
	$D^{0} \rightarrow K^{+} \pi^{-}($Double Tag $)$	Run $\left.1 \& 2 *^{*}\right)$	New
	$D^{0} \rightarrow K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}$	Run 1	New
	$D^{0} \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$	Run 1	New
	$D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$	Run 1	New
	$D^{0} \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$	Run 2	New

- External inputs to the combination

Decay	Parameters	Source
$B^{ \pm} \rightarrow D K^{* \pm}$	$\kappa_{B \pm}^{D K^{* \pm}}$	LHCb
$B^{0} \rightarrow D K^{* 0}$	$\kappa_{B^{0}}^{D K^{* 0}}$	LHCb
$B^{0} \rightarrow D^{\mp} \pi^{ \pm}$	β	HFLAV
$B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}(\pi \pi)$	ϕ_{s}	HFLAV
$D \rightarrow h^{+} h^{-} \pi^{0}$	$F_{\pi \pi \pi^{0}}^{+}, F_{K \pi \pi^{0}}^{+}$	CLEO-c
$D \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$	$F_{4 \pi}^{+}$	CLEO-c
$D \rightarrow K^{+} \pi^{-} \pi^{0}$	$r_{D}^{K \pi \pi^{0}}, \delta_{D}^{K \pi \pi^{0}}, \kappa_{D}^{K \pi \pi^{0}}$	CLEO-c+LHCb+BESIII
$D \rightarrow K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}$	$r_{D}^{K 3 \pi}, \delta_{D}^{K 3 \pi}, \kappa_{D}^{K 3 \pi}$	CLEO-c+LHCb+BESIII
$D \rightarrow K_{\mathrm{S}}^{0} K^{ \pm} \pi^{\mp}$	$r_{D}^{K_{\mathrm{S}}^{0} K \pi}, \delta_{D}^{K_{\mathrm{S}}^{0} K \pi}, \kappa_{D}^{K_{\mathrm{S}}^{0} K \pi}$	CLEO
$D \rightarrow K_{\mathrm{S}}^{0} K^{ \pm} \pi^{\mp}$	$r_{D}^{K}{ }_{\text {S }}^{0} K \pi$	LHCb

Roberta Cardinale on behalf of the LHCb Collaboration Moriond EW 2022

γ using $B^{ \pm} \rightarrow D h^{ \pm}\left(D \rightarrow h^{+} h^{\prime \pm} \pi^{0}\right)$ by LHCb

$$
\begin{aligned}
R_{K}^{\mp} & \equiv \frac{\Gamma\left(B^{\mp} \rightarrow\left[\pi^{\mp} K^{ \pm} \pi^{0}\right]_{D} K^{\mp}\right)}{\Gamma\left(B^{\mp} \rightarrow\left[K^{\mp} \pi^{ \pm} \pi^{0}\right]_{D} K^{\mp}\right)}, \\
R_{\pi}^{\mp} & \equiv \frac{\Gamma\left(B^{\mp} \rightarrow\left[\pi^{\mp} K^{ \pm} \pi^{0}\right]_{D} \pi^{\mp}\right)}{\Gamma\left(B^{\mp} \rightarrow\left[K^{\mp} \pi^{ \pm} \pi^{0}\right]_{D} \pi^{\mp}\right)} .
\end{aligned}
$$

$$
\begin{aligned}
& A_{K}^{h h \pi^{0}}=\frac{\Gamma\left(B^{-} \rightarrow\left[h h \pi^{0}\right]_{D} K^{-}\right)-\Gamma\left(B^{+} \rightarrow\left[h h \pi^{0}\right]_{D} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow\left[h h \pi^{0}\right]_{D} K^{-}\right)+\Gamma\left(B^{+} \rightarrow\left[h h \pi^{0}\right]_{D} K^{+}\right)} \\
& A_{\pi}^{h h \pi^{0}}=\frac{\Gamma\left(B^{-} \rightarrow\left[h h \pi^{0}\right]_{D} \pi^{-}\right)-\Gamma\left(B^{+} \rightarrow\left[h h \pi^{0}\right]_{D} \pi^{+}\right)}{\Gamma\left(B^{-} \rightarrow\left[h h \pi^{0}\right]_{D} \pi^{-}\right)+\Gamma\left(B^{+} \rightarrow\left[h h \pi^{0}\right]_{D} \pi^{+}\right)} \\
& R^{K K \pi^{0}}=R_{K / \pi}^{K K \pi^{0}} / R_{K / \pi}^{K \pi \pi^{0}}, \quad R^{\pi \pi \pi^{0}}=R_{K / \pi}^{\pi \pi \pi^{0}} / R_{K / \pi}^{K \pi \pi^{0}}, \\
& R_{K / \pi}^{h h \pi^{0}}=\frac{\Gamma\left(B^{-} \rightarrow\left[h h \pi^{0}\right]_{D} K^{-}\right)+\Gamma\left(B^{+} \rightarrow\left[h h \pi^{0}\right]_{D} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow\left[h h \pi^{0}\right]_{D} \pi^{-}\right)+\Gamma\left(B^{+} \rightarrow\left[h h \pi^{0}\right]_{D} \pi^{+}\right)} \\
& A_{K}^{K \pi \pi^{0}}= \frac{\Gamma\left(B^{-} \rightarrow\left[K^{-} \pi^{+} \pi^{0}\right]_{D} K^{-}\right)-\Gamma\left(B^{+} \rightarrow\left[K^{+} \pi^{-} \pi^{0}\right]_{D} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow\left[K^{-} \pi^{+} \pi^{0}\right]_{D} K^{-}\right)+\Gamma\left(B^{+} \rightarrow\left[K^{+} \pi^{-} \pi^{0}\right]_{D} K^{+}\right)} .
\end{aligned}
$$

$$
R_{\mathrm{ADS}(h)}=\frac{\Gamma\left(B^{-} \rightarrow\left[\pi^{-} K^{+} \pi^{0}\right]_{D} h^{-}\right)+\Gamma\left(B^{-} \rightarrow\left[\pi^{-} K^{+} \pi^{0}\right]_{D} h^{-}\right)}{\Gamma\left(B^{-} \rightarrow\left[K^{-} \pi^{+} \pi^{0}\right]_{D} h^{-}\right)+\Gamma\left(B^{-} \rightarrow\left[K^{-} \pi^{+} \pi^{0}\right]_{D} h^{-}\right)}
$$

$$
A_{\mathrm{ADS}(h)}=\frac{\Gamma\left(B^{-} \rightarrow\left[\pi^{-} K^{+} \pi^{0}\right]_{D} h^{-}\right)-\Gamma\left(B^{-} \rightarrow\left[\pi^{-} K^{+} \pi^{0}\right]_{D} h^{-}\right)}{\Gamma\left(B^{-} \rightarrow\left[\pi^{-} K^{+} \pi^{0}\right]_{D} h^{-}\right)+\Gamma\left(B^{-} \rightarrow\left[\pi^{-} K^{+} \pi^{0}\right]_{D} h^{-}\right)} .
$$

The results for the observables, as determined by the fit, are

$R^{K K \pi^{0}}$	$=$	1.021	\pm	0.079	\pm
0.005					
$R^{\pi \pi \pi^{0}}$	$=$	0.902	± 0.041	\pm	0.004
$A_{K}^{K \pi \pi^{0}}$	$=$	-0.024	± 0.013	\pm	0.002
$A_{K}^{K K \pi \pi^{0}}$	$=$	0.067	± 0.073	\pm	0.003
$A_{K}^{\pi \pi \pi^{0}}$	$=$	0.109	± 0.043	\pm	0.003
$A_{\pi}^{K K \pi^{0}}$	$=$	-0.001	± 0.019	\pm	0.002
$A_{\pi}^{\pi \pi \pi^{0}}$	$=$	0.001	± 0.010	\pm	0.002
R_{K}^{+}	$=$	0.0179	± 0.0024	\pm	0.0003
R_{K}^{-}	$=$	0.0085	± 0.0020	\pm	0.0004
R_{π}^{+}	$=$	0.00188	± 0.00027	\pm	0.00005
R_{π}^{-}	$=0.00227$	± 0.00028	\pm	0.00004,	

where the first uncertainties are statistical and the second are systematic. The four $R_{h}^{ \pm}$ observables can be used to calculate

$$
\begin{aligned}
& R_{\mathrm{ADS}(K)}=0.0127 \pm 0.0016 \pm 0.0002 \\
& A_{\mathrm{ADS}(K)}=-0.38 \quad \pm 0.12 \quad \pm 0.02 \\
& R_{\mathrm{ADS}(\pi)}=0.00207 \pm 0.00020 \pm 0.00003 \\
& A_{\mathrm{ADS}(\pi)}=0.069 \pm 0.094 \pm 0.016,
\end{aligned}
$$

The results for the ADS observables are more precise than those obtained by previous experiments and are compatible with them.

Belle II and SuperKEKB

SuperKEKB $e^{+} e^{-}$collider achieves higher instant luminosity using so-called nano beam scheme.

- Goal: $L=6 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ ($30 \times$ Belle)

Belle

- Achieved: $3.8 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ World record!

Belle II: all sub-detectors underwent a major upgrade from Belle, improving performance in spite of higher beam background, e.g.:
\Rightarrow Enhanced K / π separation
\Rightarrow Improved vertex resolution (more later...)

The SKB/Belle II program

- Phase 1(2016): no detector, no collision, test the rings
- Phase 2 (2018): first collisions with complete accelerator
- Incomplete detector: Vertex detector replaced by dedicated background detector (Beast 2)
- Phase 3 (2019-): luminosity run with complete detector

- Pixel Detector (PXD): layer $1+$ only 2 ladders in layer 2
- Full 4-layers strip detector (SVD)
- First physics paper appeared in January 2020
- New and difficult accelerator. Additional operational complexity during the pandemic.
- Record peak luminosity $3.81 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$.
- Path to reach $2 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ identified.
- Still large factors to reach the target peak luminosity of $6.5 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$.

Short term luminosity projections

- Base scenario: conservative extrapolation of SKB parameters from 2021
- Target scenario: extrapolation including possible improvement during LSl
- LSl starts in summer 2022 for 15 months to replace VXD. There will be other maintenance/improvement work on machine and detector.
- We resume machine operation from fall 2023.
- An International Taskforce (aiming to conclude in summer 2022) is discussing additional improvements.

7

The LHCb experiment

- LHCb is a forward spectrometer, operating at LHC $(\sqrt{s}=13 \mathrm{Tev})$

O High geometrical efficiency in collecting $b \bar{b}$ and $c \bar{c}$ quark pairs
o Excellent time resolution, momentum resolution, PID performances

[JINST 3 S08005]
[Int. J. Mod. Phys. A 30 (2015)1530022]

Expected luminosity collection by LHCb

Prospects on isospin sum rule

Prospects on on UT angle γ by LHCb

LHCb upgrade II physics case

Figure 4.1: Extrapolation of γ sensitivity from the ADS/GLW analyses where disfavoured ambiguities are ignored. The expected Belle II γ precision at an integrated luminosity of 50 $a b^{-1}$ is shown by the horizontal grey lines.

Figure 4.3: Expected evolution of γ sensitivity with the GGSZ method with (red crosses) current CLEO inputs and with (blue \times-marks) \sqrt{N} improvements on their uncertainty.

CP asymmetry in semileptonic B decays

Table 5.1: Current theoretical and experimental determinations of the semileptonic asymmetries a_{sl}^{d} and a_{sl}^{s}.

Sample (\mathcal{L})	$\delta a_{\mathrm{sl}}^{s}\left[10^{-4}\right]$	$\delta a_{\mathrm{sl}}^{d}\left[10^{-4}\right]$
Run 1 $\left(3 \mathrm{fb}^{-1}\right)[210,211]$	33	36
Run 1-3 $\left(23 \mathrm{fb}^{-1}\right)$	10	8
Run 1-3 $\left(50 \mathrm{fb}^{-1}\right)$	7	5
Run 1-5 $\left(300 \mathrm{fb}^{-1}\right)$	3	2
Current theory $[34,200]$	0.03	0.6

Figure 5.2: Current and future landscape for the semileptonic asymmetries. The grey vertical band indicates the current B-Factory average for a_{sl}^{d} [25]. The blue ellipse represents the current LHCb Run 1 measurements [210,211]. The red ellipse, which is arbitrarily centred, delineates the Upgrade II projected precision. The black ellipse shows the SM prediction, the uncertainty of which is barely visible with these axes.

[^0]: - Results establish Belle II capabilities.
 - Expect to obtain 0.03 precision on the isospin sum-rule with $50 / a b$

