Charmonium-like states at BESIII

Will Imoehl Indiana University on behalf of the BESIII collaboration

May 24, 2022

Outline

- Intro to the XYZ states
- Intro to the BESIII experiment
- Highlights of past XYZ results
- Recent searches for X(3872) decay modes
- Recent searches for Y decay modes
- The *Z_{cs}*(3985)

Intro to the Charmonium Spectrum and the XYZ States Phys. Rev. D 72, 054026 (2005)

- Bound state of $c\bar{c}$
- Modelled by Cornell potential
- States below $D\bar{D}$ all discovered
- Many states above DD
 missing
- Several unexpected states above $D\bar{D}$
- $\chi_{c1}(3872)$ (a.k.a. X(3872)) has $J^{PC} = 1^{++}$
- More ψ states than expected (a.k.a. Y states)
- *Z_c* states are isovectors, clearly exotic nature

XYZ states appear near open charm thresholds Y(4230) decays to X(3872) and Z_c 's - implies similar nature

Intro to the BESIII Experiment

- Symmetric e^+e^- collisions with $2 < E_{\rm cm} < 5~{\rm GeV}$
- 10 billion J/ψ (light hadron)
- 2.7 billion $\psi(2S)$ (charmonium)
- 3 fb $^{-1}$ at ψ (3770) (charm)
- 23 fb⁻¹ at $E_{\rm cm}$ > 4 GeV for XYZ physics

Excellent environment for XYZ physics

- Y(4230) can be directly produced via e^+e^- annihilation
- Perform energy scans and measure cross sections
- Resonance parameters determined by fits to cross sections
- States are produced nearly at rest
- Low backgrounds
- Can reconstruct complicated decay modes of XYZ states

The **BESIII** Detector

Highlights of Past Results at BESIII Phys. Rev. Lett. 112, 092001 (2014)

Phys. Rev. Lett. 110, 252001 (2013)

Phys. Rev. Lett. 118, 092001 (2017)

Top left: first observation of $e^+e^- \rightarrow \gamma X(3872)$ Bottom left: first observation of $Z_c(3900)^+$ Top right: Y(4260) resolved into Y(4230) and Y(4360)

Search for New X(3872) Decays

Search for $X(3872) \rightarrow \pi^0 \chi_{c0}$

10.1103/PhysRevD.105.072009

Search for New Y Decays

Y(4230) in $e^+e^- \rightarrow K^+K^-J/\psi$

arXiv:2204.07800

Motivation: probe strange quark content of Y(4230) and search for predicted state near 4.5 GeV

- First observation of $Y(4230) \rightarrow K^+K^-J/\psi$
- Cross section clearly rises after Y(4230), more statistics needed to figure out what is happening near 4.5 GeV

 $10 \, / \, 15$

Light Hadron Decays

Motivation: no light hadron decays for charmonium(-like) states have been observed above 4 GeV

- Precise light hadron cross section measurements
- Fit with $\frac{1}{\sqrt{E_{\rm cm}}^n}$
- No observed charmonium resonances
- No evidence for Y(4230) for any final state

Measurement of $\sigma(e^+e^- \rightarrow D^{*+}D^{(*)-})$

Motivation: Open charm cross section measurements essential to fully understand XYZ states (input to coupled channel analyses)

Cross section for $e^+e^- \rightarrow D^*D$ (left) and $e^+e^- \rightarrow D^*D^*$ (right) Improved precision will help coupled channel analysis

Search for New Z States

The *Z*_{cs}(3985)

Found at D_sD^* and D_s^*D thresholds in $e^+e^- \rightarrow K(D_sD^* + D_s^*D)$

Summary and Outlook

- BESIII is very active in XYZ studies
- Searches for X(3872) and Y(4230) decays
- More precise open charm cross sections
- Observe $Z_{cs}(3985)^-$, evidence for $Z_{cs}(3985)^0$
- Accelerator upgrade planned for 2024
 - Luminosity increase up to factor of 3 depending on energy
 - Energies up to 5.6 GeV
- More analyses are on the way

Thanks for your attention!