CP Violation and Charmless B Decays at Belle II

Chunhui Chen Iowa State University On behalf of the Belle II Collaboration 20th conference on Flavor Physics and CP violation May 23-27, 2022

SuperKEKB and Belle II

Belle II Luminosity

> Belle II has a broad and comprehensive physics program

- \checkmark CP violation in B meson decays is only one part of program
- This talk only covers few selected recent analysis results

How to measure CP Violation

Flavor tagging performance at Belle II

- > Category based flavor tagging based on the BDT
- > Calibrate using fully reconstructed flavor-eigenstate B⁰ events: ~500 signal/fb⁻¹
- Time-integrated measurement

 $\epsilon_{\text{eff}} = (30.0 \pm 1.2 (\text{stat.}) \pm 0.4 (\text{syst.}))\% \text{ [BelleII]}$

 $\epsilon_{\text{eff}} = (30.1 \pm 0.4)\%$ [Belle]

 $\epsilon_{\rm eff} = (31.2 \pm 0.3)\%$ [Babar]

$$egin{aligned} \epsilon &= rac{\epsilon_{B^0} + \epsilon_{ar{B}^0}}{2} \quad w = rac{w_{B^0} + w_{ar{B}^0}}{2} \ \Delta \epsilon &= \epsilon_{B^0} - \epsilon_{ar{B}^0} \quad \Delta w = w_{B^0} + w_{ar{B}^0} \ \mu &= \Delta \epsilon / (2\epsilon) \ \epsilon_{ ext{eff}} &= \sum_i \epsilon_{ ext{eff}, ext{i}} = \sum_i \epsilon_i \cdot (1 - 2w_i)^2 \end{aligned}$$

- > Sys error dominated by MC statistics
- Expect improvement of performance
 - Improve the current PID performance at Belle II

Time-dependent Analysis

S: mix induced CP violating parameter, A: direct CP violating parameter

Precision Measurement of mixing parameter and lifetime is critical to timedependent CPV measurements

$$\mathsf{mix}(t) = \frac{N(B^0 \to B^0) - N(B^0 \to \overline{B}^0)}{N(B^0 \to B^0) + N(B^0 \to \overline{B}^0)}(t) = \cos(\Delta m_d t)$$

> Vertex resolution for decay time measurement

> Flavor tagging calibration and validation

Mixing and Lifetime measurement

- > Using hadronic $B^0 \rightarrow D^{(*)-}\pi^+/K^+$ final states: ~ 40K signal yields
- \blacktriangleright Distinguish signal and background (bg) using ΔE and event-shape multivariate classifier
 - ✓ Subtract bg from sideband (sWeights) to obtain bg-free signal sample
 - \checkmark Fit signal Δt distribution with wrong-tag fraction and vertex resolution model
- Result consistent with the world average
 - $\tau_{B^0} = 1.499 \pm 0.013 \text{(stat.)} \pm 0.008 \text{(syst.)} \text{ ps} \qquad \tau_{B^0} = 1.519 \pm 0.004 \text{ ps} \qquad \text{[PDG]}$ $\Delta m_d = 0.516 \pm 0.008 \text{(stat.)} \pm 0.005 \text{(syst.)} \text{ ps}^{-1} \qquad \Delta m_d = 0.5065 \pm 0.0019 \text{ ps}^{-1} \qquad \text{[PDG]}$
- Important milestone: we are ready for time-dependent analysis

-7

CP Violation of $B^0 \rightarrow K_s \pi^0$

> Test new physics based on isospin sum-rule

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}$$

> Uncertainty of $I_{K\pi} = 0$ test dominated by $A_{CP}(B^0 \to K_s \pi^0)$: only feasible at Belle II

> Time-dependent analysis needs good vertex measurement with beam spot constraint \checkmark Using $B^0 \rightarrow J/\psi K_s$ to calibrate Δt resolution and bias

Decay of $B^0 \to K_s \pi^0 \gamma$

- > No time-dependent CP asymmetry in the SM
 - ✓ Right (Left) handed photon in $B^0 \to K_s \pi^0 \gamma$ ($\bar{B}^0 \to K_s \pi^0 \gamma$)
- Possible non-zero CP asymmetry from NP contribution
- > Similar challenge for time-dependent analysis as $B^0 \rightarrow K_s \pi^0$
 - ✓ Still on going
 - \checkmark Branching fraction measurement compatible to the world average

$B^+ \rightarrow \rho^+ \rho^0 \ (\rho^+ \rightarrow \pi^+ \pi^0, \rho^0 \rightarrow \pi^+ \pi^-)$

- > Measure CKM angle ϕ_2/α using hadronic $B \to \rho\rho \ (\rho^0 \rho^0, \rho^+ \rho^- \rho^\pm \rho^0)$ final states
- Possible direct CP violation due to interference between tree and penguin diagram
- > Measure longitudinal polarization f_L using angular distribution
 - ✓ Helicity angle distribution $\cos \Theta$: angle between π^+ momentum and opposite momentum of B^+ measured in ρ rest frame
- > 6D template fit taking into account of correlation
 - ✓ M_{bc} , cos Θ , ΔE , $m(\pi^+\pi^-)$, $m(\pi^+\pi^0)$, event-shape multivariate classifier
 - ✓ Charge asymmetry of track reconstruction determined using $D^+ \rightarrow K_s \pi^+$

Conclusion and Prospects

> A few selected recent results from Belle II

 \checkmark Measurement precisions are limited by the data sample

Demonstrate key ingredients for Time-dependent analysis for CPV

> Expect exciting physics results and reach from Belle II in the future

Belle II (Preliminary) 0.30 $I_{K\pi} = -0.11 \pm 0.13$ Belle+BaBar+LHCb+Belle II Winter 2021 0.25Projected uncertainty without Belle II Projected uncertainty with Belle II $I_{K\pi}$ sensitivity 0.20 arXiv: 2104.14871 [hep-ex] 0.150.100.050.002022 2021 2026 2030 Year

Projection corresponding to the luminosity plan from LHCb and Belle II

Backup

-12

Short-term SuperKEKB Plan

Int. Lumi (Delivered)

