Status of $R\left(D^{(*)}\right)$ measurement with semileptonic tagging at BABAR

Yunxuan Li, for the BABAR Collaboration

Flavor Physics and CP Violation (FPCP), 2022 University of Mississippi, USA

Caltech

Motivation for $R\left(D^{(*)}\right)$ measurements

- Semileptonic decays of B mesons mediated by W bosons.
- Decays involving electrons or muons are less sensitive to beyond standard model (BSM) contribution, while decays involving higher-mass τ lepton are sensitive to additional amplitudes.
- Development of heavy quark effective theory (HQET) and precise measurements of $B \rightarrow D^{(*)} l \nu$:

$$
R(D)_{\mathrm{SM}}=0.299 \pm 0.003, R\left(D^{*}\right)_{\mathrm{SM}}=0.254 \pm 0.005
$$

Previous measurements

Experiment	$R(D)$	$R\left(D^{*}\right)$	Method
BaBar 2012	$0.440 \pm 0.058 \pm 0.042$	$0.322 \pm 0.024 \pm 0.018$	hadronic tag, $\tau \rightarrow l \nu \nu$
Belle 2015	$0.375 \pm 0.064 \pm 0.026$	$0.293 \pm 0.038 \pm 0.015$	hadronic tag, $\tau \rightarrow l \nu \nu$
LHCb 2015	-	$0.336 \pm 0.027 \pm 0.030$	$\tau \rightarrow \mu \nu \nu$
Belle 2017	-	$0.270 \pm 0.035 \pm 0.027$	hadronic tag
LHCb 2018	-	$0.283 \pm 0.019 \pm 0.029$	$\tau \rightarrow 3 \pi \nu$
Belle 2019	$0.307 \pm 0.037 \pm 0.016$	$0.283 \pm 0.018 \pm 0.014$	semileptonic tag

BABAR experiment

- Asymmetric $e^{+} e^{-}$collider operating at center-of-mass energy of 10.58 GeV .
- Total integrated luminosity of $514 \mathrm{fb}^{-1}$ was collected (1999-2008), mostly at the $\Upsilon(4 S)$ resonance, but also at the $\Upsilon(3 S)$ and $\Upsilon(2 S)$ peaks, as well as off-resonance.

Collaboration is still active more than 10 years after data taking ended!

Analysis strategy

- Measure $R\left(D^{(*)}\right)$ using semileptonic tagging and leptonic τ decays.
- Combined measurements of $R\left(D^{0}\right)$ and $R\left(D^{+}\right)$ with isospin average.
- 2-dimensional maximum likelihood fit on data for signal extraction.
- The yields of signal and normalization modes are extracted simultaneously, aiming to eliminate
 some sources of systematic uncertainties.

Reconstruction

- Charged tracks are identified using loose PID. Photons are only considered with energy larger than 30 MeV .
- Criteria on reconstructed $m(D)$ and $\Delta M=m\left(D^{*}\right)-m(D)$ based on resolution for each $D^{(*)}$ mode.
- To identify B_{tag}, we require $\cos \theta_{B-D^{(*)} l}^{\operatorname{tag}} \in[-2,1]$.

$$
\cos \theta_{B-D^{(*)} l}^{t a g}=\frac{2 E_{b e a m} E_{D^{(*)} l}-m_{B}^{2}-m_{D^{(*)} l}^{2}}{2\left|\mathbf{p}_{B}\right| \cdot\left|\mathbf{p}_{D^{(*)} l}\right|}
$$

- Search for $D^{(*)} l$ from the remaining tracks and neutral clusters: $D^{+} l, D^{0} l, D^{*+} l, D^{* 0} l$.
- No extra charged tracks, K_{S}^{0} or π^{0} particles.

Multivariate analysis for signal separation

- z_{1} aims to distinguish signal and normalization events from all types of backgrounds.
- z_{2} aims to distinguish between signal and normalization events.
- Both classifiers are boosted decision tree (BDT) models.

Signal modeling

- Adaptive kernel density estimation is applied to learn the PDFs for each event type densities.
- Dual-tree algorithm with GPU acceleration for speed-up [A. Gray and A. Moore, 2003].

Figure: Benchmark performance for various implementations, as a function of sample size $(N)\left(\log =\log _{2}\right)$.

2D fit

- Extract signals from each of four subsets $D^{+} l, D^{0} l, D^{*+} l, D^{0 *} l$ independently.
- For each subset, the distribution is combination of signal, normalization, feed-up (feed-down), $B \rightarrow D^{* *} l \nu, B \bar{B}$ combinatorial and continuum events.
- Maximum likelihood fit is applied on each subset. All the yields are free parameters $\left(Y_{j} \mathrm{~s}\right)$ during the 2D fit.

$$
\begin{align*}
\max _{\mathbf{Y}} \mathcal{L} & =\prod_{i=1}^{n}\left(\sum_{j=1}^{C} Y_{j} \cdot f\left(z_{1 j}, z_{2 j}\right)\right) \\
\text { s.t. } & \sum_{j=1}^{C} Y_{j}=N \tag{1}
\end{align*}
$$

Figure: Example of 2D fit on $D^{0} l$ subset.

Systematic uncertainties (preliminary)

Source	$\Delta R(D)(\%)$	$\Delta R\left(D^{*}\right)(\%)$
$B \rightarrow D l \nu$ form factor	0.48	0.30
$B \rightarrow D^{*} l \nu$ form factor	0.96	0.58
$B \rightarrow D^{* *} l \nu$ form factor	0.35	0.20
$\mathcal{B}\left(B \rightarrow D^{(*)} l \nu\right)$	0.47	0.32
$\mathcal{B}(b \rightarrow c \bar{c})$	0.49	0.25
$\mathcal{B}\left(B \rightarrow D^{* *} l \nu\right)$	2.94	2.53
$\mathcal{B}(D)$	0.87	0.91
PDF shapes MC statistics	4.12	4.37
$B \bar{B}$ Background calibration	2.60	0.94
$\mathcal{B}(\Upsilon(4 S))$	0.29	0.33
PID efficiency	0.29	0.40
Soft π^{0} efficiency	0.84	1.24
$\mathcal{B}\left(\tau \rightarrow l^{-} \bar{\nu}_{l} \nu_{\tau}\right)$	0.16	0.16
Systematic Total	5.98	5.31
Statistical Uncertainty	19.6	9.9
Total	20.68	11.23

Table: Summary of uncertainties evaluated on MC.

- The overall uncertainties are still dominated by statistics.
- Statistical uncertainties can be reduced if including cross-feed matrix constraints.

Conclusion

- Another precise measurement of $R\left(D^{(*)}\right)$ from BABAR after a decade.
- BABAR's first $R\left(D^{(*)}\right)$ measurement using semileptonic B-tagging method and leptonic τ decays.
- Proposed a new measurement method, more data-driven, fewer assumptions from MC.
- Hopefully, a comparable measurement on $R\left(D^{(*)}\right)$ will be delivered soon.

Thanks for your attention!

Event types definition for the measurement

Event type		Description
Signal event	signal D signal D^{*}	One B decays to $D^{(*)} l \nu$, the other B decays to $D \tau \nu, \tau \rightarrow$ leptons One B decays to $D^{(*)} l \nu$, the other B decays to $D^{*} \tau \nu, \tau \rightarrow$ leptons
	norm D norm D^{*}	One B decays to $D^{(*)} l \nu$, the other B decays to $D l \nu$ Both B decay to $D^{*} l \nu$
$D^{* *}$ event		At least one B decays to $D^{* *}(l / \tau) \nu$, where $D^{* *}$ includes $1 P$ states combinatorial $B \bar{B}$ event $D_{1}, D_{1}^{\prime}, D_{2}^{*}, 2 S$ states, and non-resonant states. Continuum event Any $B \bar{B}$ events that are not signal and not normalization and not $D^{* *}$.

Table: Definition of event types in the B-factory system.

Probability modeling setup for the measurement

Denote

$$
\begin{align*}
P & :=\mathcal{B}(B \rightarrow D \tau \nu), P^{*}:=\mathcal{B}\left(B \rightarrow D^{*} \tau \nu\right) \tag{2}\\
Q & :=\mathcal{B}(B \rightarrow D l \nu), Q^{*}:=\mathcal{B}\left(B \rightarrow D^{*} l \nu\right)
\end{align*}
$$

Therefore, $R(D)=\frac{P}{Q}$ and $R\left(D^{*}\right)=\frac{P^{*}}{Q^{*}}$. The expected number of signal (normalization) events generated in the detector would be

$$
\begin{align*}
& N(\text { signal } D)=2 N \cdot\left(2 Q+2 Q^{*}\right) \cdot P \cdot \mathcal{B}(\tau \rightarrow \text { leptons }) \\
& N\left(\text { signal } D^{*}\right)=2 N \cdot\left(2 Q+2 Q^{*}\right) \cdot P^{*} \cdot \mathcal{B}(\tau \rightarrow \text { leptons }) \\
& N(\text { norm } D)=4 N \cdot\left(Q^{2}+2 Q Q^{*}\right) \tag{3}\\
& N\left(\text { norm } D^{*}\right)=4 N \cdot Q^{* 2}
\end{align*}
$$

Given the estimated number of generated signal events $\hat{N}($ signal $D)$ and $\hat{N}\left(\right.$ signal $\left.D^{*}\right)$ and normalization events $\hat{N}($ norm $D)$ and $\hat{N}\left(\right.$ norm $\left.D^{*}\right)$, the estimated $P^{(*)}$ and $Q^{(*)}$ can be solved from Equation (3):

$$
\begin{align*}
& \hat{P}=\frac{\hat{N}(\text { signal } D)}{2 \sqrt{N} \cdot \mathcal{B}(\tau \rightarrow \text { leptons }) \cdot \sqrt{\hat{N}(\text { norm } D)+\hat{N}\left(\text { norm } D^{*}\right)}} \\
& \hat{P}^{*}=\frac{\hat{N}\left(\text { signal } D^{*}\right)}{2 \sqrt{N} \cdot \mathcal{B}(\tau \rightarrow \text { leptons }) \cdot \sqrt{\hat{N}(\text { norm } D)+\hat{N}\left(\text { norm } D^{*}\right)}} \tag{4}\\
& \hat{Q}=\frac{\sqrt{\hat{N}(\text { norm } D)+\hat{N}\left(\text { norm } D^{*}\right)}-\sqrt{\hat{N}\left(\text { norm } D^{*}\right)}}{2 \sqrt{N}} \\
& \hat{Q}^{*}=\sqrt{\frac{\hat{N}\left(\text { norm } D^{*}\right)}{4 N}}
\end{align*}
$$

Distribution of selected variables

Maximum likelihood estimation details

For the $D^{+} l$ subset, the distribution is combination of signal, signal feed-down, normalization, normalization feed-down, $B \rightarrow D^{* *} l \nu, B \bar{B}$ combinatorial and continuum events:

$$
\begin{align*}
f\left(z_{1}, z_{2}\right) & =N_{B \rightarrow D \tau \nu} f_{B \rightarrow D \tau \nu}\left(z_{1}, z_{2}\right)+N_{B \rightarrow D^{*} \tau \nu} f_{B \rightarrow D^{*} \tau \nu}\left(z_{1}, z_{2}\right) \\
& +N_{B \rightarrow D l \nu} f_{B \rightarrow D l \nu}\left(z_{1}, z_{2}\right)+N_{B \rightarrow D^{*} l \nu} f_{B \rightarrow D^{*} l \nu}\left(z_{1}, z_{2}\right) \tag{5}\\
& +N_{B \rightarrow D^{* *} l \nu} f_{B \rightarrow D^{* *} l \nu}\left(z_{1}, z_{2}\right)+N_{\text {Other Bkgs }} f_{\text {Other Bkgs }}\left(z_{1}, z_{2}\right)
\end{align*}
$$

Detailed systematic of $\mathcal{B}\left(B \rightarrow D^{* *} l \nu\right)$

Generally, $D^{* *}$ is defined as any excited charmed meson states that is not in the 1 S ground state. The following possibilities are considered in this analysis:

- Resonant $D^{* *}(1 P)$ state: include the four lightest orbitally excited charmed meson states $D_{0}^{*}(2400), D_{1}^{\prime}(2430), D_{1}(2420), D_{2}^{*}(2460)$.
- Resonant $D^{* *}(2 S)$ state: radially-excited modes.
- Non-resonant $B \rightarrow D^{* *}(l / \tau) \nu$ where $D^{* *} \rightarrow D^{(*)} \pi$

