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Motivation for R(D(∗)) measurements

1 Introduction5

1.1 Theoretical Motivations OK6

In the Standard Model (SM), the quark level b → cτν transition happens through a W-boson exchange7

(Fig 1). In New Physics (NP) models, which predict the existence of a charged Higgs sector, such as8

the type II 2-Higgs Doublet Model (2HDM-II) [1], the W± may be replaced by a charged Higgs and the9

B → D(∗)τν decay turns out to be sensitive to physics beyond the SM. Since the Higgs-charged lepton10

coupling is proportional to the lepton mass, final states with τ ’s are more suitable to detect NP effects with11

respect to decay modes with lighter leptons (# = e, µ). In addition to B → D(∗)τν, there are other B decays12

which are sensitive to H± contributions, such as B → τν and B → Xsγ. Among them, the processes under13

discussion present several advantages, such as: quite precise prediction of measurable quantities within the14

SM (i.e. σ(B)/B " 5 − 7% [1], with B being the branching fraction), H± contribution at tree level, quite15

high decay rate (B " 0.7 − 1.5% [1]), and experimental constraints from the presence of a D(∗) in the final16

state.
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Figure 1: B → D(∗)τν quark level diagram.
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To reduce experimental and theoretical errors and to make a more effective comparison with theory, we18

measure the ratio R(D(∗)) defined as:19

R(D(∗)) ≡ B(B → D(∗)τν)

B(B → D(∗)#ν)
=

ND(∗)τν

ND(∗)#ν

· εD(∗)#ν

εD(∗)τν

(1)

with N being the yield of a given final state and ε the estimated efficiency. If one considers only leptonic τ20

decays, the signal mode (B → D(∗)τν) and the normalization one (B → D(∗)#ν) are reconstructed by means21

of the same final state particles. In this way, some of the systematics uncertainties cancel in the ratio. The22

same happens for theoretical uncertainties on quantities entering the two B in Eq. 1, such as Vcb and the23

form factors.24

In the latest BABAR analysis [2] [3], the SM expectations for the ratios defined in Eq. 1 have been computed to25

be R(D) = 0.297±0.017 and R(D∗) = 0.252±0.003. In the 2HDM-II framework, studies on the dependence26

of R(D(∗)) on the ratio of tan β and mH ( with β and mH being the ratio of the vacuum expectation values27

and the mass of the charged Higgs, respectively) have also been made, as documented in Ref. [4]. A detailed28

discussion on the impact of NP on R(D(∗)) and on measurable kinematic quantities in B → D(∗)τν decays29

is reported in [3].30

1.2 Experimental status OK31

BABAR has recently presented the most precise measurements [2] [3] with 16% and 10% uncertainties on32

R(D) and R(D∗), respectively, which are dominated by statistical errors. These results deviate from the SM33

expectations at 3.4σ level (3.2σ with respect to more recent SM calculations referenced in Ref. [3]) and not34

even 2HDM-II can accommodate the experimental results, which exclude this model at 99.8% confidence35

level. Less recent measurements were performed from both BABAR and Belle experiments and, along with36

the most recent ones, they are listed in Tab. 1. As it can be noticed from both Tab. 1 and the Fig. 1.2,37

all the measurements report R(D) and R(D∗) central values which exceed the SM expectation, even if the38

errors from former analyses were too large to claim for a discrepancy between experiment and SM theory.39
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Theory

Feynman diagram of the !" → $(∗)% &'$

! " ∗ =
ℬ % → "(∗) '($
ℬ % → "(∗) ) (%

Signal mode

Normalization mode

• Semileptonic decays of % mesons mediated by* bosons.

• Decays involving electrons or muons are less sensitive to non-SM contribution,
while decays involving higher-mass ' lepton are sensitive to additional amplitudes.

• Development of heavy quark effective theory (HQET) and precise measurements of
% → "(∗))(%

!&' " = 0.299 ± 0.003 !&' "∗ = 0.258 ± 0.005

• Semileptonic decays of B mesons mediated by W bosons.

• Decays involving electrons or muons are less sensitive to beyond standard
model (BSM) contribution, while decays involving higher-mass τ lepton are
sensitive to additional amplitudes.

• Development of heavy quark effective theory (HQET) and precise
measurements of B → D(∗)lν:

R(D)SM = 0.299± 0.003, R(D∗)SM = 0.254± 0.005
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Previous measurements

Experiment R(D) R(D∗) Method
BaBar 2012 0.440± 0.058± 0.042 0.322± 0.024± 0.018 hadronic tag, τ → lνν
Belle 2015 0.375± 0.064± 0.026 0.293± 0.038± 0.015 hadronic tag, τ → lνν
LHCb 2015 - 0.336± 0.027± 0.030 τ → µνν
Belle 2017 - 0.270± 0.035± 0.027 hadronic tag
LHCb 2018 - 0.283± 0.019± 0.029 τ → 3πν
Belle 2019 0.307± 0.037± 0.016 0.283± 0.018± 0.014 semileptonic tag
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BABAR experiment

• Asymmetric e+e− collider operating at center-of-mass energy of 10.58 GeV.

• Total integrated luminosity of 514 fb−1 was collected (1999-2008), mostly at
the Υ (4S) resonance, but also at the Υ (3S) and Υ (2S) peaks, as well as
off-resonance.

Collaboration is still active more than 10 years after data taking ended!
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Analysis strategyReconstruction

• Charged tracks (8, :, <±, =±) are identified using loose PID. Photons are identified using
GoodPhotonLoose, but with 0.01 ≤ ?@A ≤ 0.6. It only considers photons with energy
larger than 30 MeV.

• <- are identified using pi0AllDefault and pi0SoftDefaultMass: C11 ∈ 115, 150 MeV.
=+ are identified using KsDefault.
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• Measure R(D(∗)) using semileptonic tagging
and leptonic τ decays.

• Combined measurements of R(D0) and R(D+)
with isospin average.

• 2-dimensional maximum likelihood fit on data
for signal extraction.

• The yields of signal and normalization modes are
extracted simultaneously, aiming to eliminate
some sources of systematic uncertainties.

Signal extraction strategy
We apply 2-dimensional unbinned fit to extract signal yields.

• Q8: signal and normalization events vs. background events

• Q9: signal events vs. normalization events

• Both are trained using Boosting Decision Tree (BDT) models for classification.

- . = /#* ⋅ -#* . + /#∗* ⋅ -#∗* . + /#$ ⋅ -#$ . + /#∗$ ⋅ -#∗$ . + ⋯

Normalization
events

Signal
Events

Background
Events

Q9

Q8
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Reconstruction
Reconstruction

• Charged tracks (8, :, <±, =±) are identified using loose PID. Photons are identified using
GoodPhotonLoose, but with 0.01 ≤ ?@A ≤ 0.6. It only considers photons with energy
larger than 30 MeV.

• <- are identified using pi0AllDefault and pi0SoftDefaultMass: C11 ∈ 115, 150 MeV.
=+ are identified using KsDefault.
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• Charged tracks are identified using loose PID. Photons are only considered
with energy larger than 30 MeV.

• Criteria on reconstructed m(D) and ∆M = m(D∗)−m(D) based on
resolution for each D(∗) mode.

• To identify Btag, we require cos θtag
B−D(∗)l ∈ [−2, 1].

cos θtag
B−D(∗)l =

2EbeamED(∗)l −m2
B −m2

D(∗)l

2|pB | · |pD(∗)l|
• Search for D(∗)l from the remaining tracks and neutral clusters:

D+l,D0l,D∗+l,D∗0l.
• No extra charged tracks, K0

S or π0 particles.
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Multivariate analysis for signal separation

• z1 aims to distinguish signal and normalization events from all types of
backgrounds.

• z2 aims to distinguish between signal and normalization events.

• Both classifiers are boosted decision tree (BDT) models.
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Signal modeling
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• Adaptive kernel density estimation is
applied to learn the PDFs for each event
type densities.

• Dual-tree algorithm with GPU
acceleration for speed-up [A. Gray and
A. Moore, 2003]. Figure 7.1: Runtime benchmark. N is the number of training and query points and log is in base 2. 1M is

approximately when log N = 20

2. Leaf evaluation: if the first phase can not justify making the approximations before reaching a leaf, it
will be forced to perform the naive evaluation over the points residing at a leaf node.

Even though it is guaranteed that the number of leaf evaluations will be bounded such that the runtime
complexity is O(n), the hidden constants will strongly depend on the actual number of leaf evaluations,
which can still be large when the extent of the kernel is large.

One way to speed this up is to observe that the direct evaluation lends itself very naturally to paral-
lelization. In fact, the naive way of performing these kinds of N -body problems is one of the canonical
ways in which GPU manufacturers measure and benchmark the improvements made between di↵erent chip
generations. This lead us to algorithm 3 [21], which performs the direct evaluation on NVIDIA GPUs.

One might notice that algorithm 3 does not perform the parallelization strategy that equation 7.2 most
directly suggests. That is, instead of creating O(n2) threads to parallelize each term in the computation
and then finally doing a parallel aggregation, we instead assign each thread the task of aggregating all
contributions for a single query point. This is due to the relative speeds of memory accesses on the GPU; it
turns out that the computational e�ciency that we gain in taking advantage of all the available parallism is
overshadowed by the number of global memory accesses that it requires.

7.1.3 Results and benchmarks

Figure 7.1 benchmarks the runtime of each algorithmic improvement for kernel density estimation. The
direct (dual-tree) algorithm is represented by an open (closed) circle, while the CPU (GPU) evaluation is
represented using blue (green) circles.

We can clearly see the performance gain obtained by applying the various stages of algorithmic improve-
ments. By extrapolating the runtime out to log N = 20, we see that the total performance improvement

56

Figure: Benchmark performance for
various implementations, as a function
of sample size (N) (log = log2).
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2D fit

• Extract signals from each of four subsets
D+l,D0l,D∗+l,D0∗l independently.

• For each subset, the distribution is combination of
signal, normalization, feed-up (feed-down),
B → D∗∗lν, BB̄ combinatorial and continuum
events.

• Maximum likelihood fit is applied on each subset.
All the yields are free parameters (Yjs) during
the 2D fit.

max
Y

L = Πn
i=1(

∑C
j=1Yj · f(z1j , z2j))

s.t.

C∑
j=1

Yj = N
(1)
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Figure: Example of 2D fit on
D0l subset.
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Systematic uncertainties (preliminary)

Source ∆R(D) (%) ∆R(D∗) (%)

B → Dlν form factor 0.48 0.30
B → D∗lν form factor 0.96 0.58
B → D∗∗lν form factor 0.35 0.20
B(B → D(∗)lν) 0.47 0.32
B(b → cc̄) 0.49 0.25
B(B → D∗∗lν) 2.94 2.53
B(D) 0.87 0.91
PDF shapes MC statistics 4.12 4.37
BB̄ Background calibration 2.60 0.94
B(Υ (4S)) 0.29 0.33
PID efficiency 0.29 0.40
Soft π0 efficiency 0.84 1.24
B(τ → l−ν̄lντ ) 0.16 0.16
Systematic Total 5.98 5.31
Statistical Uncertainty 19.6 9.9
Total 20.68 11.23

Table: Summary of uncertainties evaluated on MC.

• The overall uncertainties are still dominated by statistics.

• Statistical uncertainties can be reduced if including cross-feed matrix
constraints.
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Conclusion

• Another precise measurement of R(D(∗)) from BABAR after a decade.

• BABAR’s first R(D(∗)) measurement using semileptonic B-tagging method
and leptonic τ decays.

• Proposed a new measurement method, more data-driven, fewer assumptions
from MC.

• Hopefully, a comparable measurement on R(D(∗)) will be delivered soon.

Thanks for your attention!
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Event types definition for the measurement

Event type Description

Signal event
signal D One B decays to D(∗)lν, the other B decays to Dτν, τ → leptons
signal D∗ One B decays to D(∗)lν, the other B decays to D∗τν, τ → leptons

Normalization event
norm D One B decays to D(∗)lν, the other B decays to Dlν
norm D∗ Both B decay to D∗lν

D∗∗ event At least one B decays to D∗∗(l/τ)ν, where D∗∗ includes 1P states
D∗

0 , D1, D
′
1, D

∗
2 , 2S states, and non-resonant states.

combinatorial BB̄ event Any BB̄ events that are not signal and not normalization and not
D∗∗.

Continuum event non-BB̄ events produced in the detector

Table: Definition of event types in the B-factory system.
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Probability modeling setup for the measurement
Denote

P := B(B → Dτν), P ∗ := B(B → D∗τν)

Q := B(B → Dlν), Q∗ := B(B → D∗lν)
(2)

Therefore, R(D) = P
Q and R(D∗) = P∗

Q∗ . The expected number of signal (normalization) events generated

in the detector would be

N(signal D) = 2N · (2Q + 2Q
∗
) · P · B(τ → leptons)

N(signal D∗
) = 2N · (2Q + 2Q

∗
) · P∗ · B(τ → leptons)

N(norm D) = 4N · (Q2
+ 2QQ

∗
)

N(norm D
∗
) = 4N · Q∗2

(3)

Given the estimated number of generated signal events N̂(signal D) and N̂(signal D∗) and normalization

events N̂(norm D) and N̂(norm D∗), the estimated P (∗) and Q(∗) can be solved from Equation (3):

P̂ =
N̂(signal D)

2
√
N · B(τ → leptons) ·

√
N̂(norm D) + N̂(norm D∗)

P̂∗ =
N̂(signal D∗)

2
√
N · B(τ → leptons) ·

√
N̂(norm D) + N̂(norm D∗)

Q̂ =

√
N̂(norm D) + N̂(norm D∗) −

√
N̂(norm D∗)

2
√
N

Q̂∗ =

√
N̂(norm D∗)

4N

(4)
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Distribution of selected variables
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Maximum likelihood estimation details

For the D+l subset, the distribution is combination of signal, signal feed-down,
normalization, normalization feed-down, B → D∗∗lν, BB̄ combinatorial and
continuum events:

f(z1, z2) = NB→DτνfB→Dτν(z1, z2) +NB→D∗τνfB→D∗τν(z1, z2)

+NB→DlνfB→Dlν(z1, z2) +NB→D∗lνfB→D∗lν(z1, z2)

+NB→D∗∗lνfB→D∗∗lν(z1, z2) +NOther BkgsfOther Bkgs(z1, z2)

(5)

15 / 16



Detailed systematic of B(B → D∗∗lν)

Generally, D∗∗ is defined as any excited charmed meson states that is not in the
1S ground state. The following possibilities are considered in this analysis:

• Resonant D∗∗(1P ) state: include the four lightest orbitally excited charmed
meson states D∗

0(2400), D
′
1(2430), D1(2420), D

∗
2(2460).

• Resonant D∗∗(2S) state: radially-excited modes.

• Non-resonant B → D∗∗(l/τ)ν where D∗∗ → D(∗)π
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