

B decays to charmonia at LHCb

Ramón Ángel Ruiz Fernández, on behalf of LHCb collaboration

The 2022 Conference on Flavour Physics and CP Violation | May 23-27, Oxford, Mississippi (USA)

B decays to charmonia at LHCb

- B2CC specific working group at LHCb.
- Precise measurements on CKM sector ⇒ stringent tests for SM.
- Mainly focused on CPV measurements, lifetime measurements, Branching Ratios...

Today's menu:

1 Search for
$$B^0 \to J/\psi(\mu^+\mu^-)\phi(\kappa^+\kappa^-)$$
.
2 CPV phase measurement in $B^0_s \to J/\psi(e^+e^-)\phi(\kappa^+\kappa^-)$.
3 τ_L in $B^0_s \to J/\psi(\mu^+\mu^-)\eta(\gamma\gamma)$.

Search for $B^0 \to J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ [Chin. Phys. C45 (2021) 043001]

- $b \rightarrow c\bar{c}d$ transition \rightarrow Cabibbo supressed.
- ϕ resonance produced by $\omega \phi$ interference (small mixing angle supressed), or vacuum excitation (Okubo-Zweig-lizuka supressed) [Phys. Lett. 5 (1963) 165].
- Predicted Branching Ratio: $(1.8 \pm 0.3) \times 10^{-7}$ [PLB666(2008)185188]
- Previous LHCb (@1 ${\rm fb}^{-1}$): BR< 1.9×10^{-7} [Phys.Rev.D.88.072005]

Figure 1: Feynman diagrams for the decay $B^0\to J/\psi\phi$ via (a) $\omega-\phi$ mixing and (b) tri-gluon fusion.

Search for $B^0 \to J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ [Chin. Phys. C45 (2021) 043001]

- Full Run1+Run2 data. Control channel: $B_s^0 \rightarrow J/\psi \phi$.
- Correct MC variables to match background substracted data.
- BDT (Remove combinatorial background).

• Efficiency ratio
$$(B_{(s)} \to J/\psi KK)$$
: $\frac{\epsilon_{B^0}}{\epsilon_{B^0_s}} = \frac{\epsilon_{B^0}^{acc}}{\epsilon_{B^0_s}^{acc}} \times \frac{\epsilon_{B^0}^{sel}}{\epsilon_{B^0_s}^{acd}} \times \frac{\epsilon_{B^0_s}^{m(KK)}}{\epsilon_{B^0_s}^{m(KK)}}$.

 \rightarrow found compatible with 1.

- Sequential fits in $m(J/\psi K^+K^-)$ and $m(K^+K^-)$ to determine $B^0_{(s)} \to J/\psi \phi$.
 - Fit $m(J/\psi K^+K^-)$ and estimate yields and bkgs in $m(KK) \in [1000, 1050]$ MeV.
 - Fit m(KK) in same region to distinguish $\phi(1020)$.
- Use Profile Likelihood Scan to set Upper Limit.

Search for
$$B^0 \to J/\psi(\mu^+\mu^-)\phi(K^+K^-)$$
 [Chin. Phys. C45 (2021) 043001]

$$B^0_{s}
ightarrow J/\psi(e^+e^-)\phi(K^+K^-)$$

[Eur. Phys. J. C81 (2021) 1026]

¹CKMfitter, Phys. Rev. D84, 033005 (2011), updated with Summer 2019 results

²[TH:Kristof et al JHEP 1503 (2015) 145], [EXP:JHEP 11 (2015) 082]

B decays to charmonia at LHCb

 $B_{\rm s}^0 \rightarrow J/\psi(e^+e^-)\phi(K^+K^-)$

- Run1 analysis.
- First time φ_s is measured with e⁺e⁻ in final state.
- Flavour tagged time dependent angular analysis.
- $P \rightarrow VV$
- $\blacksquare~\approx$ 10% of dimuon yield.
- Resolution of the reconstructed invariant mass affected by bremsstrahlung.

 $B_{\rm s}^0 \rightarrow J/\psi(e^+e^-)\phi(K^+K^-)$

[Eur. Phys. J. C81 (2021) 1026]

- Consistent with SM.
- ϕ_s consistent with 0.
- $|\lambda|$ consistent with 1.
- Statistically limited.
- More details on Marcos Romero Lamas talk! [16:00].

au_L in $B^0_s o J/\psi(\mu^+\mu^-)\eta(\gamma\gamma)$

LHCb-PAPER-2022-010, PRELIMINARY!

- A sizable $\Delta \Gamma = \Gamma_L \Gamma_H$ is predicted (L, H mass eigenstates).
- ϕ_s consistent with SM (very small) \rightarrow CPV in mixing is small.
- Mass eigenstates \approx CP eigenstates.
- Measure the effective lifetime on a pure *CP* even \rightarrow direct access to $\tau_{\rm eff}=1/\Gamma_L.$
- Advantages: Not needed Angular/tagging analysis
- Disadvantages: Small statistics

• SM prediction:
$$\tau_L = \frac{\tau_{B_s^0}}{1-y_s^2} \left[\frac{1+2*A*y_s+y_s^2}{1+A*y_s} \right]^3$$

 $y_s = \Delta\Gamma_s/2\Gamma_s, A = +1(-1) \text{ CP-odd (even)}.$
 $\tau_L = (1.42 \pm 0.01) \text{ ps}$
TH: $\tau_{B_s^0/\tau_{B^0}} = 1.0006 \pm 0.002 \text{ and } \Delta\Gamma_s = (0.091 \pm 0.013) \text{ ps}^{-1.4}$
EXP: $\tau_{B^0} = 1.519 \pm 0.004 \text{ [PDG2020]}$

³Fleischer et al.,Eur.Phys.J. C71 (2011) 1789

⁴Lenz et al. JHEP07(2020)177

$$au_{\it L}$$
 in $B^0_{s}
ightarrow J/\psi(\mu^+\mu^-)\eta(\gamma\gamma)$

- Selection as lifetime unbiased as possible.
- 2D (t,m) unbinned likelihood fit.
- Mass fits:
 - signal: Double side Crystal Ball.
 - 2 $B^0 \rightarrow J/\psi\eta$: DSCB.
 - Omb.: 2nd order Chebyshev pol.
 - **(4)** $B_s^0 \rightarrow J/\psi \phi(\eta \gamma)$: bifurcated Gaussian.
- **Decay Time**: Exp(t) * Res(t) * Acc(t).
 - Triple Gaussian Model
 - VELO misaligment found negligible (3.8 fs).

LHCb-PAPER-2022-010, PRELIMINARY!

$$au_{\it L}$$
 in $B^0_s o J/\psi(\mu^+\mu^-)\eta(\gamma\gamma)$

LHCb-PAPER-2022-010, PRELIMINARY!

⁵PDG2020

⁶HFLAV

Summary

- **()** Update in the Upper limit for the $\mathcal{B}(B^0 \to J/\psi\phi) < 1.1 \times 10^{-7}$.
- 2 First measurement of ϕ_s in $B_s^0 \to J/\psi(e^+e^-)\phi(K^+K^-)$, compatible with no CPV, consistent with SM prediction and consistent with $B_s^0 \to J/\psi(\mu^+\mu^-)\phi(K^+K^-)$.
- **③** Update in the lifetime measurement τ_L , using $B_s^0 \rightarrow J/\psi\eta$ to be $\tau_{eff} = 1.449 \pm 0.016 \pm 0.001$ ps (@9 fb⁻¹).
- Stay tuned for many interesting new results!

BACKUP

Fit results of $m(J/\psi K^+K^-)$

Table 1: Measured yields of all contributions from the fit to $J/\psi K^+K^-$ mass distribution, showing the results for the full mass range and for the B_s^0 and B^0 regions.

Data	Category	Full	B_s^0 region	B^0 region
Run 1	$B^0_s \to J\!/\!\psi K^+ K^-$	$55498 \hspace{0.2cm} \pm \hspace{0.2cm} 238$	$51859 \ \pm 220$	35 ± 6
	$B^0 \to J\!/\!\psi K^+ K^-$	$127\ \pm 19$	0	$119\ \pm 18$
	$\Lambda_b^0 o J\!/\!\psi p K^-$	$407\ \pm 26$	55 ± 8	$61\ \pm 8$
	Combinatorial background	$758\ \pm 55$	$85\ \pm 11$	$94\ \pm 11$
Run 2	$B^0_s \to J\!/\!\psi K^+ K^-$	$249670 \ \pm 504$	$233663 \ \pm 472$	$153\ \pm 12$
	$B^0 \to J\!/\!\psi K^+ K^-$	$637\ \pm 39$	0	$596\ \pm 38$
	$\Lambda_b^0 o J\!/\!\psi p K^-$	$1943\ \pm 47$	$261\ \pm 16$	$290\ \pm 17$
	Combinatorial background	$2677 \ \pm 109$	$303\ \pm 20$	$331\ \pm 21$

$m(K^+K^-)$ fit strategy

$$\begin{split} P^{tot}_{s/d} &= \textit{N}^{\phi}_{s/d} \times \textit{S}_{\phi}(m) + \textit{N}^{non}_{s/d} \times \textit{S}_{non}(m) + \textit{N}^{\Lambda}_{s/d} \times \textit{B}_{\Lambda}(m) + \textit{N}^{com}_{s/d} \times \textit{B}_{com}(m) + \textit{N}^{B^0_s}_d \times \textit{T}_{B^0_s}(m) \\ & S_{\phi} \text{ same lineshape for } \textit{B}_{s/d} \to J/\psi \phi \text{ decays} \\ & S_{non}, f_0(980) / a_0(980) + \text{nonres. for } \textit{B}^0_{s/d} \to J/\psi \textit{K}^+\textit{K}^- \text{ decays.} \\ & B_{\Lambda}\&\textit{B}_{com} \text{ shapes of } \Lambda^b_0 \text{ and comb bkg (3th \& 2th Chebyshev).} \\ & T_{B^0_s}, \textit{B}^0_s \text{ tail shape under } \textit{B}^0 \text{ peak.} \\ & \textit{N}^{\Lambda}_{s/d}, \textit{N}^{com}_{s/d}, \textit{N}^{B^0_s}_d \text{ fixed from } \textit{m}(J/\psi\textit{K}^+\textit{K}^-) \text{ fit.} \end{split}$$

 ϕ : BF * $|A_{BW}|^2 \otimes G$ BF: Barrier factor, A_{BW} Breit-winger, G gaussian non- $\phi \ K^+K^-$: $P_B P_R F_B^2 (\frac{P_B}{m_B})^{2L_B} |A_R \times e^{i\delta} + A_{NR}|^2$ A_R Flatte model, A_{NR} a constant for nonresonance Phys. Lett. B 63 (1976) 228. δ constrained based on $B_{s/d} \rightarrow J/\psi K^+K^-$ amplitude analysis PhysRevD.87.072004.

Syst. in ${\it B}^0 ightarrow {\it J}/\psi \phi$

Table 2: Systematic uncertainties on $\mathcal{B}(A)$	$B^0 o J\!/\!\psi \phi)$ i	for multiplicative and	additive sources.
---	-----------------------------	------------------------	-------------------

Multiplicative uncertainties	Value (%)
${\cal B}(B^0_s o J/\psi \phi)$	6.2
Scaling factor for f_s/f_d	3.4
$\varepsilon_{B^0}/\varepsilon_{B^0_s}$	1.8
Total	7.3
Additive uncertainties	Value (10^{-8})
$m(J/\psi K^+K^-)$ model of combinatorial background	0.03
Fixed yields of Λ_b^0 in $m(K^+K^-)$ fit	0.05
Fixed yields of combinatorial background in $m(K^+K^-)$ fit	0.61
Fixed yields of B_s^0 contribution in $m(K^+K^-)$ fit	0.24
Constant d	0.01
$m(K^+K^-)$ shape of B_s^0 contribution	0.29
$m(K^+K^-)$ shape of Λ_b^0	0.28
$m(K^+K^-)$ shape of combinatorial background	0.16
$m(K^+K^-)$ shape of non- ϕ	0.06
Total	0.80

PLS in ${\cal B}^{\rm 0} \to J/\psi \phi$

MF in $B^0_s
ightarrow J/\psi(e^+e^-)\phi(K^+K^-)$

- MF for B_s^0 :
 - Signal: Double CB.
 - ② Comb: Exponential.
 - (a) $B_s^0 \to \Psi(2S)\phi$ (part.) double Gaussian.
 - **(4)** $B_s^0 \rightarrow \chi_{c1}(1P)\phi$ (part.) Gaussian.
- MF for B^0 (Control Channel):
 - Signal: Double CB.
 - ② Comb: Exponential.
 - (a) $B_s^0 \to \Psi(2S)K^*$ (part.) double Gaussian.
 - $B_s^0 \rightarrow \chi_{c1}(1P)K^*$ (part.) Gaussian.
 - **(a)** $B_s^0 \rightarrow J/\psi K_1(1270)$ (part.) Double CB.

MF in $B^0_s ightarrow J/\psi(e^+e^-)\phi(K^+K^-)$

Table 7: The results of the fit to the $m(e^+e^-K^+K^-)$ distribution in the data sample divided into three Bremsstrahlung categories. The scale parameter is a difference between sigma of the first and second Crystal Ball function and $n_1 = n_2 = n$. The shape of the partially reconstructed background is fixed to MC fit discribed in Sec. 5.2.

Parameter	0γ	1γ	2γ	
α_1	$0.134{\pm}0.005$	$0.199{\pm}0.006$	$0.37{\pm}0.01$	fixed to MC fit
$lpha_2$	$-1.28 {\pm} 0.3$	$-0.742{\pm}0.02$	$-0.546{\pm}0.02$	fixed to MC fit
$\sigma_1 [\mathrm{MeV}\!/c^2]$	$31.4{\pm}4.3$	$45.0{\pm}4.$	$72.5{\pm}8.8$	float
\mathbf{scale}	$1.15{\pm}0.1$	$1.5{\pm}0.05$	$0.96{\pm}0.03$	fixed to MC fit
$\mu [{ m MeV}/c^2]$	$5337.6{\pm}4.4$	$5336.4{\pm}2.5$	$5351.9{\pm}5.3$	float
$f_{ m CB1}$	$0.987{\pm}0.008$	$0.7{\pm}0.006$	$0.59{\pm}0.01$	fixed to MC fit
n	$5.3{\pm}0.5$	$30.0{\pm}6.0$	$21.0{\pm}5.0$	fixed to MC fit
bkg slope	-0.00023 ± 0.00014	-0.00046 ± 0.00006	-0.00046 ± 0.00010	float
N_{cbkg}	$7697{\pm}452$	$22752{\pm}453$	$16625{\pm}594$	
$f_{B^0_s \to \psi(2S)\phi}$	$0.387{\pm}0.014$	$0.432{\pm}0.008$	$0.453{\pm}0.010$	float
$N_{B^0_* \to \psi(2S)\phi}$	$210{\pm}60$	$508{\pm}134$	$347{\pm}163$	
$N_{B_s^0 \to \chi_{c1}(1P)\phi}$	$333{\pm}164$	$666 {\pm} 336$	$420 {\pm} 394$	
N _{sig}	$3374{\pm}325$	$6289{\pm}215$	$3060{\pm}375$	

Acceptances in $B^0_s ightarrow J/\psi(e^+e^-)\phi(K^+K^-)$

Figure 4: Signal efficiency as a function of the decay time, $\varepsilon_{\rm data}^{B_s^0}(t)$, scaled by the average

Figure 5: Efficiency projected onto (left) $\cos \theta_K$, (middle) $\cos \theta_e$ and (right) ϕ_h obtained from a simulated $B_s^0 \rightarrow J/\psi \phi$ sample, scaled by the average efficiency.

Syst.
$$B^0_s
ightarrow J/\psi(e^+e^-)\phi$$

Table 4: Statistical and systematic uncertainties. A dash corresponds to systematic uncertainties that are negligible. Systematic uncertainties from different sources are added in quadrature.

Source	Γ_s	$\Delta \Gamma_s$	A_{\perp}^2	A_0^2	δ_{\parallel}	δ_{\perp}	ϕ_s	$ \lambda $	F_S	δ_S
	$[\mathrm{ps}^{-1}]$	$[\mathrm{ps}^{-1}]$		0	[rad]	[rad]	[rad]			[rad]
Stat. uncertainty	0.018	0.045	0.034	0.029	$^{+0.08}_{-0.07}$	$^{+0.43}_{-0.42}$	0.28	$^{+0.112}_{-0.116}$	$^{+0.042}_{-0.051}$	$^{+0.25}_{-0.27}$
Mass factorisation	0.003	0.003	0.005	0.007	0.01	0.03	0.02	0.011	0.017	0.01
Mass model	0.011	0.005	0.004	0.005	0.02	0.14	0.05	0.011	0.007	0.04
Ang. acceptance	_	_	0.002	0.001	_	0.02	0.01	0.005	0.003	0.02
Time resolution	0.002	0.008	0.004	0.002	0.06	0.02	0.03	0.003	0.002	0.01
Time acceptance	0.003	0.003	0.001	0.001	_	_	_	0.001	_	_
MC (time acc.)	0.001	0.001	0.001	_	_	_	_	_	_	_
MC (ang. acc.)	_	_	0.001	0.001	0.01	0.01	0.02	0.017	0.003	_
Λ_{b}^{0} background	0.001	0.001	0.001	0.001	0.01	_	0.01	0.005	0.01	_
Ang. resolution	_	0.002	0.002	0.003	_	0.01	_	_	0.005	_
B_c^+ background	0.003	_	_	_	_	_	_	_	_	_
Fit bias	_	—	_	0.009	_	_	_	0.020	-	_
Syst. uncertainty	0.012	0.011	0.008	0.013	0.07	0.15	0.07	0.031	0.022	0.05
Total uncertainty	0.022	0.046	0.035	0.032	0.10	$^{+0.46}_{-0.45}$	0.29	$^{+0.117}_{-0.121}$	$^{+0.047}_{-0.056}$	$^{+0.26}_{-0.28}$

Mass fit in τ_L measurement

- $B_s^0 \rightarrow J/\psi\eta$: Double sided crystal Ball (tail parameters from MC)
- $B^0 \rightarrow J/\psi\eta$: Double sided crystal Ball (it overlaps w/ signal mode, differences of mass peaks to known value 87.22 ± 0.16 MeV/c²).
- Combinatorial bkg: 2nd order Chebyshev polinomial.
- $B^0_s
 ightarrow J/\psi \phi(\eta \gamma)$: bifurcated Gaussian function.
- $B_s^0 \to X_{c1,c2}(J/\psi\gamma)(\eta)$: Error function based on simulation (unknown lifetime left free in the fit).

Decay time fit in τ_L measurement

- All (exc. comb bkg) $Exp(t) \circledast Res(t) \circledast Acc(t)$ *Comb bkg = Sum of two exps.
- 2 σ in Res(t)=52fs from simulation.
- **4** A_{DLS} : Decay Length significance (by trigger requirements). Modeled using simulation and calibrated on $B^+ \rightarrow J/\psi K^+$ data.
- A_{IP}: Requirements on \(\chi_{IP}^2\), modeled using simulated signal decays.
- **(6)** A_{VELO} : Less efficiency when Distance of closest approach increases. (1/3 respect to Run1). Calibration of order 2 fror simulation (1 $\beta t \gamma t^2$).
- **D** A_{MVA} : χ^2_{IP} in MVA. Linear acceptance correction.
- 8 Fit bias with/without A \rightarrow 18fs.

Fit τ_L

Syst in τ_L measurement

Table 1: Systematic uncertainties on the lifetime measurement in fs. Uncertainties less than 0.1 fs are indicated with a dash.

Source	Uncertainty [fs]
Simulated sample sizes	5.2
A_{β}	1.1
$A_{\chi^2_{10}}$ mino	0.4
A _{DLS} prelit	-
MVA acceptance	1.7
B^+ lifetime	4.0
Time resolution model	0.3
VELO half alignment	3.8
τ for $B_s^0 \to \chi_c \eta$ component	0.7
Mass model	0.8
Momentum scale	-
z-scale	0.3
B^0 component	0.4
Data-MC $\chi^2_{\rm IP}$ differences	0.1
Mass-time correlation	0.5
B_c^+ component	1
Quadrature sum	8.0