

Measurement of branching fraction and search for CP violation in $D^0 \rightarrow K_s^0 K_s^0 \pi^+ \pi^-$ decays at Belle

FPCP 2022

University of Cincinnati

Motivation:

- In Standard Model framework, charm meson decays are expected to have very small CP violation, $O(10^{-3})$ or smaller [1]
- CP violation measurement significantly deviating from SM expectation will probe new physics.
- Singly Cabibbo suppressed (SCS) charm decays are expected to be uniquely sensitive to new physics effects. [1]
- First experimental observation of CP violation in SCS charm mesons was made by LHCb. [2]
- In this analysis, we have searched for CP violation in the SCS charm meson decay $D^0 \rightarrow K_s^0 K_s^0 \pi^+ \pi^-$
- We also performed branching fraction measurement for this decay mode. (previously measured by BESIII)

[1] (yuval grossman, et al. Phys.Rev.D 75 (2007), 036008)
[2] LHCb Collaboration Phys.Rev.Lett. 122 (2019) 21, 211803

CP violating observable a_{CP}^{T} :

- We measure the CP violation using T-odd triple product (TP) asymmetries.
- We define scalar triple product C_T as:

• $C_T = \vec{p}_{K_s^0} \cdot (\vec{p}_{\pi^+} \times \vec{p}_{\pi^-})$ (K_s^0 with higher momentum is used)

- I. I. Y. Bigi. Charm physics: Like Botticelli in the Sistine Chapel.
- Michael Gronau et.al PRD,495 84(9), Nov 2011.

 $P_{\pi^+} \times \vec{P}_{\pi^-}$

 \vec{P}_{π} -

- $A_T = \frac{N_1 (C_T > 0) N_2 (C_T < 0)}{N_1 (C_T > 0) + N_2 (C_T < 0)}$
- For \overline{D}^0 decays, CP conjugate observables: $A_T \xrightarrow{CP} \overline{A}_T$, $C_T \xrightarrow{C} \overline{C}_T \xrightarrow{P} \overline{C}_T \xrightarrow{\vec{p}_{\pi^+}}$ • $\overline{A}_T = \frac{N_3 (-\overline{C}_T > 0) - N_4 (-\overline{C}_T < 0)}{N_2 (-\overline{C}_T > 0) + N_4 (-\overline{C}_T < 0)}$
- The difference $a_{CP}^{T} = \frac{1}{2}(A_T \overline{A}_T)$ is a CP violating observable.
- The observable a_{CP}^{T} is independent of effects from strong phases.

- Michael Gronau et.al PRD,495 84(9), Nov 2011.
- By construction, a_{CP}^{T} is mostly unaffected by production and detection related asymmetries.

CP violation measurement using *A_{CP}* :

• We also measure the *CP* violating observable A_{CP} defined as:

$$A_{CP}^{\text{det}} = \frac{N(D^0 \to f) - N(\overline{D}{}^0 \to \overline{f})}{N(D^0 \to f) + N(\overline{D}{}^0 \to \overline{f})}$$

- It is the difference in number of D^0 and \overline{D}^0 decays to the *CP* conjugate final states f and \overline{f} .
- Measurement of both A_{CP} and a_{CP}^{T} are complementary to each other:
 - The observable $A_{CP} \propto sin(\phi) sin(\delta)$, where (ϕ) is weak and (δ) is strong phase difference between the contributing amplitudes. • <u>A. Datta</u> et.al, Int.J.Mod.Phys.A 19 (2004), 2505-2544
 - The observable $a_{CP}^T \propto sin(\phi) cos(\delta)$
 - To observe a non zero A_{CP} strong phase difference (δ) must be non zero, whereas the a_{CP}^{T} is largest when the strong phase difference (δ) is zero.

Branching fraction (BF) measurement:

- With our data sample of 921 fb⁻¹, we can perform world's most precise measurement of $D^0 \rightarrow K_s^0 K_s^0 \pi^+ \pi^-$ branching fraction.
- We will measure the branching fraction relative to normalization channel $D^0 \rightarrow K_s^0 \pi^+ \pi^-$.
- The Branching fraction is calculated using :

Belle detector and data sample:

- KEKB accelerator: collided 8 GeV e^- with 3.5 GeV e^+ . (https://lib506extopc.kek.jp/preprints/PDF/1995/9524/9524007.pdf)
- Belle detector is situated at collision point of KEKB accelerator. (Nucl.Instrum.Meth.A 479 (2002), 117-232)
- Belle detector had:
 - good PID
 - good vertexing capability
- For this analysis we have used data sample corresponding to $921 \, fb^{-1}$ integrated luminosity.
- Data is collected at e⁺e⁻ COM energy equal to Y(4S),
 60 MeV below Y(4S) and Y(5S) resonances.

Reconstruction of decay at Belle detector

- Reconstructed decay chain and the corresponding selection criteria are summarized in the figure on right.
- In case of multiple candidate events, we choose a single candidate corresponding to the lowest value for ∑χ²/ndf of D*, D⁰ and K⁰_s vertex fit.
- We get a reconstruction efficiency of 6.92% for $D^0 \rightarrow K_s^0 K_s^0 \pi^+ \pi^-$
- We apply same set of selection criteria for normalization channel $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ and obtain a reconstruction efficiency of 14.97 %

Branching fraction measurement

Signal extraction for BF measurement:

- $D^0 \rightarrow K^0_s K^0_s \pi^+ \pi^-$:
 - To extract the signal events from data sample we have used a 2d unbinned extended maximum likelihood fit in variables: $M_{D^0}[M(K_s^0K_s^0\pi^+\pi^-)]$ and $\Delta M[M(K_s^0K_s^0\pi^+\pi^-\pi_{slow}^+) M(K_s^0K_s^0\pi^+\pi^-)]$
 - Fit results from 921 fb⁻¹ Belle data:

Details on signal and background pdf in backup slide #22

- We obtain 6095 ± 98 signal events from 921 fb^{-1} of data.
- We perform the branching fraction measurement relative to normalization channel $D^0 o K^0_s \pi^+ \pi^-$

Signal extraction for BF measurement:

- $D^0 \rightarrow K^0_s \pi^+ \pi^-$:
 - To extract the signal events from data sample we have used a 2d binned extended maximum likelihood fit in variables M_{D^0} and ΔM
 - Fit results from 921 fb⁻¹ Belle data:

Details on signal and background pdf in backup slide #22

- We obtain 1069870 ± 1831 $D^0 \to K_s^0 \pi^+ \pi^-$ events from 921 fb⁻¹ of data.
- The measured values are:
 - BF($D^0 \to K_s^0 K_s^0 \pi^+ \pi^-)$ /BF($D^0 \to K_s^0 \pi^+ \pi^-$) = [1.72 ± 0.03 (stat.) ± 0.04 (syst.)]%
 - BF($D^0 \rightarrow K_s^0 K_s^0 \pi^+ \pi^-$) = [4.82 ± 0.08 (stat.) $^{+0.10}_{-0.11}$ (syst.) ± 0.31 (norm.)] × 10⁻⁴

A_{CP} measurement

Fit for A_{CP} :

The A_{CP} value obtained using below equation includes contribution from non CP violating production and reconstruction • asymmetries:

$$A_{CP}^{\text{det}} = \frac{N(D^0 \to f) - N(\overline{D}{}^0 \to \overline{f})}{N(D^0 \to f) + N(\overline{D}{}^0 \to \overline{f})}$$

 \rightarrow Asymmetry due to difference in reconstruction efficiency between π_s^+ and $\pi_s^ A_{CP}^{\text{det}} = A_{CP}$ Forward backward asymmetry *CP* violating asymmetry

• To account for
$$A_{\varepsilon}^{\pi_s}$$
, we weight the D^0 and \overline{D}^0 events as: $w_{D^0} = 1 - A_{\epsilon}^{\pi_s}(p_T, \cos \theta_{\pi_s})$
 $w_{\overline{D}^0} = 1 + A_{\epsilon}^{\pi_s}(p_T, \cos \theta_{\pi_s})$

- Resulting A_{CP} now includes $A_{CP}^{cor} = A_{CP} + A_{FB}$.
- The forward backward asymmetry is odd function of $cos(\theta^*)$, where θ^* is D* polar angle in COM frame.
- For a given $\cos(\theta^*)$ bin, we obtain true *CP* violating asymmetr $A_{CP} = \frac{A_{CP}^{cor}(\cos\theta^*) + A_{CP}^{cor}(-\cos\theta^*)}{2}$
- The average of all positive $\cos(\theta^*)$ bins will be quoted as final A_{CP} asymmetry.

A_{CP} results from 921 fb⁻¹ Belle data:

 A_{CP} values as function of $\cos(\theta^*)$:

• The red line is a straight line fit to A_{CP} values

• Final A_{CP} result is : $A_{CP} = \left[-2.51 \pm 1.44 \text{ (stat.)} \right]_{-0.52}^{+0.35} \text{ (syst.)} \times 10^{-2}$ A_{FB} values as function of $\cos(\theta^*)$:

• The red lines shows the expected prediction for A_{FB} $A_{FB} = 0.029 \cos(\theta^*) / (1 + \cos^2(\theta^*))$

$a_{\rm CP}^{\rm T}$ measurement

Simultaneous fit for a_{CP}^{T} measurement:

• To measure a_{CP}^{T} , data sample is divided into four categories:

- To obtain a^T_{CP}, we perform a 2d unbinned extended maximum likelihood fit simultaneously to these four datasets.
- Instead of yields N_1 , N_2 , N_3 and N_4 , we float N_1 , A_T , N_3 and a_{CP}^T . This choice is made to get correct uncertainty in a_{CP}^T from fit results instead of calculating them using the uncertainty in yields.
- The expression for N_2 and N_4 in terms of N_1 , A_T , N_3 and a_{CP}^{T} are obtained as shown below:

•
$$A_T = \frac{N_1 (C_T > 0) - N_2 (C_T < 0)}{N_1 (C_T > 0) + N_2 (C_T < 0)}$$
, $N_2 = \frac{N_1 (1 - A_T)}{(1 + A_T)}$
• $\bar{A}_T = \frac{N_3 (-\bar{C}_T > 0) - N_4 (-\bar{C}_T < 0)}{N_3 (-\bar{C}_T > 0) + N_4 (-\bar{C}_T < 0)}$ and $a_{CP}^T = \frac{1}{2} (A_T - \bar{A}_T) \longrightarrow N_4 = \frac{N_3 (1 - (A_T - 2 * a_{CP}^T))}{1 + (A_T - 2 * a_{CP}^T)}$

Simultaneous fit for a_{CP}^{T} measurement:

- From 921 fb⁻¹ Belle data we obtain:
 - $a_{CP}^{T} = [-1.95 \pm 1.42 \text{ (stat.)} ^{+0.14}_{-0.12} \text{ (syst.)}]\%$
 - The result is consistent with no CP violation within uncertainties.
- Simultaneous fit projections on M_{D^0} and ΔM for four data samples are shown below:

Summary:

- 1. We have measured the branching fraction of $D^0 \to K_s^0 K_s^0 \pi^+ \pi^-$: $BF(D^0 \to K_s^0 K_s^0 \pi^+ \pi^-) = [4.82 \pm 0.08 (\text{stat.}) \stackrel{+0.10}{_{-0.11}} (\text{syst.}) \pm 0.31 (\text{norm.})] \times 10^{-4}$
 - (BESIII measurement: = $[5.30 \pm 0.90 \text{ (stat.)} \pm 0.30 \text{ (syst.)}] \times 10^{-4}$)

This is the world's most precise measurement for this decay mode.

2> We have measured the *CP* violating observable A_{CP} : $A_{CP} = \begin{bmatrix} -2.51 \pm 1.44 \text{ (stat.} \end{bmatrix} \stackrel{+0.35}{_{-0.52}} \text{ (syst.} \end{bmatrix} \times 10^{-2}$

The measured A_{CP} value is consistent with zero CP violation.

3> We have measured *CP* violating observable a_{CP}^T : $a_{CP}^T = \begin{bmatrix} -1.95 \pm 1.42 \text{ (stat.} \end{bmatrix} \stackrel{+0.14}{_{-0.12}} \text{ (syst.} \end{bmatrix} \times 10^{-2}$

This measurement is also consistent with zero *CP* violation.

Thank You!

Backup

Search for CP violation using a_{CP}^{T-odd} in D decays :

Variables used for K_S^0 reconstruction by Belle neural network based method

- K_s^0 momentum in lab frame.
- Distance along the z axis between two track helices at their closest approach.
- Flight length in x-y plane.
- Angle between K_s^0 momentum and the vector joining IP to K_s^0 decay vertex.
- Angle between π momentum and laboratory frame direction in K_s^0 rest frame.
- Distance of closest approach in the x-y plane between the IP and the two pion helices.
- Total number of hits in SVD (silicon vertex detector) and CDC (central drift chamber) for two pion tracks.

Signal extraction for BF measurement:

- $D^0 \rightarrow K^0_s K^0_s \pi^+ \pi^-$:
 - Using simulation, events are divided into following categories:
 - Events with correctly reconstructed signal decays.
 - Random π_{slow} background. (correctly reconstructed D^0 combined with wrong π_{slow})
 - **Broken charm peaking background.** (reconstruction missed one or more final state particles from a real *D*⁰ decay to a non signal final state)
 - $D^0 \rightarrow 3K_s^0$ peaking background (96% vetoed by selection on $\pi^+\pi^-$ invariant mass).
 - **Combinatorial background.** (random combination of final state particles)

• $D^0 \rightarrow K^0_s \pi^+ \pi^-$:

- Using simulation, events are divided into following categories:
 - Events with correctly reconstructed signal decays.
 - Random π_{slow} background.
 - Broken charm peaking background.
 - Combinatorial background.

Details of pdfs used to extract signal:

Component type	<i>М_D</i> о	ΔM
Signal decays	3 Asymmetric Gaussian (AG)	2AG + 1 student-t
Mis-reconstructed signal	2 nd order chebychev polynomial	4 th order chebychev polynomial
Random π_{slow} background	Same as signal	$Q^{\frac{1}{2}} + \alpha Q^{\frac{3}{2}} (Q = \Delta M - M_{\pi})$
Broken charm background	2 gaussian	student-t
$D^0 \rightarrow 3K_s^0$ background	gaussian	student-t
Combinatoric background	2 nd order chebychev polynomial	$Q^{\frac{1}{2}} + \alpha' Q^{\frac{3}{2}}$

 $2>D^0\to K^0_s\pi^+\pi^-$

 $1>D^0 \to K^0_S K^0_S \pi^+ \pi^-$:

Component type	$M_D^{}$ o	ΔM	
Signal decays	3 Asymmetric Gaussian (AG)	1G + 1 Asymmetric student-t	
Random $\pi_{ m slow}$ background	Same as signal	$Q^{\frac{1}{2}} + \alpha Q^{\frac{3}{2}} (Q = \Delta M - M_{\pi})$	
Broken charm background	gaussian + 2 nd order polynomial	student-t	
Combinatoric background	1 st order chebychev polynomial	$Q^{\frac{1}{2}} + \alpha' Q^{\frac{3}{2}}$	

Rearranging asymmetry equations on slide 5

•
$$A_T = \frac{N_1(C_T > 0) - N_2(C_T < 0)}{N_1(C_T > 0) + N_2(C_T < 0)}$$
, $\implies N_2 = \frac{N_1(1 - A_T)}{(1 + A_T)}$

•
$$\bar{A}_T = \frac{N_3 (-\bar{c}_T > 0) - N_4 (-\bar{c}_T < 0)}{N_3 (-\bar{c}_T > 0) + N_4 (-\bar{c}_T < 0)} \text{ and } a_{CP}^{T-odd} = \frac{1}{2} (A_T - \bar{A}_T) \implies N_4 = \frac{N_3 (1 - (A_T - 2 * a_{CP}^{T-odd}))}{1 + (A_T - 2 * a_{CP}^{T-odd})}$$

Systematic uncertainty for BF:

Summary of systematic uncertainty for BF measurement:

Source	$K^0_S K^0_S \pi^+ \pi^-$	$K_S^0\pi^+\pi^-$	The final BE results are:	
	(%)	(%)		
Fixed PDF parameters	0.14	0.09	1> BF($D^0 \rightarrow K_s^0 K_s^0 \pi^+ \pi^-)$ /BF($D^0 \rightarrow K_s^0 \pi^+ \pi^-)$ =	
$D^0 \rightarrow K^0_S K^0_S K^0_S$ background	0.11	_	[1.72 ± 0.03 (stat.) ± 0.04 (syst.)] %	
Broken charm background	0.98	—	$- \mathbf{p} \mathbf{r} (\mathbf{p}) = \mathbf{u} (\mathbf{u}) + - \mathbf{v}$	
MC statistics	0.26	0.17	$2 > BF(D^{\circ} \rightarrow K_{s}^{\circ} K_{s}^{\circ} \pi^{+} \pi^{-}) = [4.82 \pm 0.08 \text{ (stat.)}^{\pm 0.10} \text{ (syst.)} \pm 0.31 \text{ (norm.)}] \times 10^{-4}$	
PID efficiency correction	0.80	0.74	$[4.02 \pm 0.00 (3tat.) = 0.11 (393t.) \pm 0.51 (10111.)] \times 10$	
K_S^0 reconstruction efficiency	0.83	0.36		
Tracking Efficiency	0.70		 This is the world's most precise measurement for 	
$M(\pi^+\pi^-)$ veto efficiency	$^{+0.42}_{-0.93}$	_	$D^0 \rightarrow K_s^0 K_s^0 \pi^+ \pi^-$ branching fraction.	
Fraction of mis-reconst. signal	$^{+0.02}_{-0.03}$	_	RESIII result.	
$D^0 \rightarrow K_S^0 K_S^0 \pi^+ \pi^-$ decay model	0.73		$BF(D^0 \to K_s^0 K_s^0 \pi^+ \pi^-) =$	
$\mathcal{B}(K^0_S \to \pi^+ \pi^-)$	0.07	_	$(5.20 \pm 0.90 \text{ (stat.)} \pm 0.30 \text{ (syst.)}] \times 10^{-4}$	
Total for $\mathcal{B}_{K^0_SK^0_S\pi^+\pi^-}/\mathcal{B}_{K^0_S\pi^+\pi^-}$	+2.07 -2.23	3		

Systematic uncertainty for a_{CP}^{T} :

Summary of systematic uncertainties evaluated for a_{CP}^T :

Source	(%)
Fixed PDF parameters	0.010
$D^0 \rightarrow K^0_S K^0_S K^0_S$ background	$^{+0.000}_{-0.013}$
Broken charm background	$+0.014 \\ -0.040$
Efficiency variation with C_T , \overline{C}_T	$^{+0.14}_{-0.11}$
Total	$+0.14 \\ -0.12$

- This yield a final result $a_{CP}^{T} = [-1.95 \pm 1.42 \text{ (stat.)} ^{+0.14}_{-0.12} \text{ (syst.)}]\%$
- This result is consistent with no CP violation within uncertainties.

Systematic uncertainty for A_{CP}:

Summary of systematic uncertainties evaluated for A_{CP}

Sources	(%)
Fixed PDF parameters	± 0.01
$D^0 \rightarrow K^0_S K^0_S K^0_S$ background	$^{+0.02}_{-0.03}$
Broken charm background	$^{+0.09}_{-0.07}$
Binning in $\cos \theta^*$	$^{+0.33}_{-0.51}$
Reconstruction asymmetry $A_{\epsilon}^{\pi_s}$	± 0.01
Fixed background fractions	± 0.04
Total	$^{+0.35}_{-0.52}$

Final A_{CP} result is : $A_{CP} = \left[-2.51 \pm 1.44 \text{ (stat.)} \right]_{-0.52}^{+0.35} \text{ (syst.)} \times 10^{-2}$

 $A_{\varepsilon}^{\pi_{s}}$ weights for A_{CP} :

$$A_{\varepsilon}^{\pi_{S}} = \frac{\varepsilon_{f}^{+} - \varepsilon_{f}^{-}}{\varepsilon_{f}^{+} + \varepsilon_{f}^{-}}$$

$$\varepsilon_f^{\pm}$$
: reconstruction efficiency for π_{slow}^{\pm}

$$w_{D^0} = 1 + A_{\varepsilon}^{\pi_s} = \frac{2\varepsilon_f^+}{\varepsilon_f^+ + \varepsilon_f^-}$$

 $w_{\overline{D}^0} = 1 - A_{\varepsilon}^{\pi_s} = \frac{2\varepsilon_f^-}{\varepsilon_f^+ + \varepsilon_f^-}$

Efficiency for D^0 and \overline{D}^0 become same after applying these weights

All measurements of CP violation in charm decays using a_{CP}^{T-odd} :

 https://hflav-eos.web.cern.ch/hflaveos/charm/cp_asym/charm_todd_19Sep19.html

T-odd asymmetries in D⁰ decays

Year	Experiment	T-odd asymmetry in the decay mode D0 to K+K-π+π-	$\mathbf{A}_{\mathbf{T}\text{-}\mathbf{odd}} = (\mathbf{A}_{\mathbf{T}} - \overline{\mathbf{A}}_{\mathbf{T}})/2$
2019	BELLE	J. B. Kim et al. (BELLE Collab.), Phys. Rev. D 99, 011104 (2019).	$+0.0052 \pm 0.0037 \pm 0.0007$
2014	LHCb	<u>R. Aaij et al. (LHCb Collab.), JHEP 10, 5 (2014).</u>	$+0.0018 \pm 0.0029 \pm 0.0004$
2010	BABAR	P. del Amo Sanchez et al. (BABAR Collab.), Phys. Rev. D81, 111103 (2010).	$+0.0010 \pm 0.0051 \pm 0.0044$
2005	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 622, 239 (2005).	$+0.010 \pm 0.057 \pm 0.037$
		HFLAV average	$+0.0035 \pm 0.0021$
Year	Experiment	T-odd asymmetry in the decay mode D0 to K0sπ+π-π0	$\mathbf{A}_{\mathbf{T}\text{-}\mathbf{odd}} = (\mathbf{A}_{\mathbf{T}} - \overline{\mathbf{A}}_{\mathbf{T}})/2$
2017	BELLE	K. Prasanth et al. (BELLE Collab.), Phys. Rev. D 95, 091101 (2017).	-0.00028 ± 0.00138 (+0.00023 -0.00076)

T-odd asymmetries in D⁺ decays

Year	Experiment	T-odd asymmetry in the decay mode D+ to K0sK+ π + π -	$\mathbf{A}_{\text{T-odd}} = (\mathbf{A}_{\text{T}} - \overline{\mathbf{A}}_{\text{T}})/2$
2011	BABAR	J.P. Lees et al. (BABAR Collab.), Phys. Rev. D 84, 031103 (2011).	$-0.0120 \pm 0.0100 \pm 0.0046$
2005	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 622, 239 (2005).	$+0.023 \pm 0.062 \pm 0.022$
		HFLAV average	-0.0110 ± 0.0109

T-odd asymmetries in D_s⁺ decays

Year	Experiment	T-odd asymmetry in the decay mode Ds+ to K0sK+π+π-	$\mathbf{A}_{\text{T-odd}} = (\mathbf{A}_{\text{T}} - \overline{\mathbf{A}}_{\text{T}})/2$
2011	BABAR	J.P. Lees et al. (BABAR Collab.), Phys. Rev. D 84, 031103 (2011).	$-0.0136 \pm 0.0077 \pm 0.0034$
2005	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 622, 239 (2005).	$-0.036 \pm 0.067 \pm 0.023$
		HFLAV average	-0.0139 ± 0.0084