Rare and LFNU B decays at LHCb The 2022 Conference on Flavour Physics and CP Violation

Nik hef

·FORWARD SPECTROMETER

- ·PRODUCTION OF B-HADRONS IN pp collisions
- •RUN 1 AND RUN 2 9 FB-1 OF INTEGRATED LUNINOSITY

LHCb detector

Rare decays

RARE DECAYS: ELECTROWEAK DECAYS WITH LOW BF OR FORBIDDEN IN SM

STUDY OF THE D-SEL TRANSITION

VERY SUPPRESSED IN THE SM THEORETICALLY CLEAN IN RATIOS OR LEPTON SPECIES VERY SENSITIVE TO NEW PHYSICS

Phys. Rev. D105 (2022) 012010 Phys. Rev. Lett. 128 (2022) 041801

0.3

0.2

0.1

 0^{ι}_{0}

2

3

 $\times 10^{-9}$

 $\boldsymbol{B}(B_s^0 \rightarrow \mu^+ \mu^-)$

 $B^{0}_{(S)} \to \mu^{+}\mu^{-}(\gamma)$

- JDIDATES FORMING A GOOD, DISPLACED VERTEX ROM FIT TO MUTUT IN BINS OF A BDT CLASSIFIER
- $\mathscr{B}(B_s^0 \to \mu^+ \mu^-) = (3.09^{+0.46+0.15}_{-0.43-0.11}) \times 10^{-9}$
- MOST PRECISE TO DATE IN AGREEMENT WITH SN
- $\mathscr{B}(B^0 \to \mu^+ \mu^-) < 2.6 \times 10^{-10} \text{ at } 95\% \text{ CL}$
- TIGHTER UPPER LINIT AFFECTED BY B>hth'-
- ONLY ISR INCLUDED $\mathscr{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{m_{\mu\mu} > 4.9 \text{ GeV}/c^2} < 2.0 \times 10^{-9} \text{ at } 95\% \text{ CL}$ FIRST LINIT EVER SET

PRD105 (2022) 012010 PRL128 (2022) 041801

 $B_{\rm c}^0 \to \mu^+ \mu^-$ effective lifetime

* EFFECTIVE LIFETIME: AVERAGE DECAY TIME OF DECAY CANDIDATES IN EXPERIMENT

$\tau_{\mu\mu} = (2.07 \pm 0.29 \pm 0.03) \text{ ps}$

CONSISTENT WITH HEAVY MASS EIGENSTATE (SM) -> 1.50

Run1+Run2 datasets

Lepton Flavour Universality

- · IN SM ELECTROWEAK COUPLING IS UNIVERSAL FOR ALL LEPTONS
- ONLY DIFFERENCES FROM MASSES PHASE SPACE * TESTED IN MANY DIFFERENT DECAYS

$$R_{H} = \frac{\mathscr{B}(X_{b} \to H\mu^{+}\mu^{-})}{\mathscr{B}(X_{b} \to He^{+}e^{-})}$$

· GOOD WAY TO SEARCH FOR NEW PHYSICS: * SOME NP MODELS DO NOT HAVE LFU * WELL PREDICTED - QCD UNCERTAINTIES CANCEL

 $\frac{-}{-}$ with $H = K^+, K_S^0, K^{*+}, \dots$

Muon vs electron detection

DETECTION ASYMMETRIES M VS C- DIFFERENT IN TRIGGERING AND RECONSTRUCTION

· GOOD AND EASY FOR MUONS · DIFFICULT FOR ELECTRONS - BREMSSTRAHLUNG

Nature Phys. 18 (2022) 3, 277-282

Run1+Run2 datasets

LFU: R_K

DOUBLE RATIO -> REDUCE SYSTEMATICS FROM MVS C RECONSTRUCTION $R_{K} = \frac{\mathscr{B}(B^{+} \to K^{+}\mu^{+}\mu^{-})}{\mathscr{B}(B^{+} \to J/\psi(\mu^{+}\mu^{-})K^{+})} \times \frac{\mathscr{B}(B^{+} \to J/\psi(e^{+}e^{-})K^{+})}{\mathscr{B}(B^{+} \to K^{+}e^{+}e^{-})}$

FOR RARE MODE ONLY $1.1 < q_{\mu}^2 < 6 GeV/c^4$

EFFICIENCIES VALIDATED WITH J/Y RATIO - CONSISTENT WITH UNITY

 $R_K = 0.846 \begin{array}{c} +0.042 \\ -0.039 \end{array} \begin{array}{c} +0.013 \\ -0.012 \end{array}$

TENSIONS WITH 5M-3.10

Phys. Rev. Lett. 128 (2022) 191802

Run1+Run2 datasets

ISOSPIN PARTNER. INVERSE DOUBLE RATIO

 $R_{K_{s}^{0}}^{-1} = \left(\frac{\mathscr{B}(B^{0} \to K_{s}^{0}\mu^{+}\mu^{-})}{\mathscr{B}(B^{0} \to J/\psi(\mu^{+}\mu^{-})K_{s}^{0})} \times \frac{\mathscr{B}(B^{0} \to J/\psi(e^{+}e^{-})K_{s}^{0})}{\mathscr{B}(B^{0} \to K_{s}^{0}e^{+}e^{-})}\right)^{-1}$

FOR RARE MODE ONLY $1.1 < q_0^2 < 6 \text{ GeV}^2/c^4$ KS RECONSTRUCTED AS KS→TTTT- LESS PRECISE

AGREES WITH 5N-1.5V

Phys. Rev. Lett. 128 (2022) 191802

Run1+Run2 datasets

LFU: R_{K*+}

AND ALSO B+->K*+ l+l- WITH INVERSE DOUBLE RATIO

 $R_{K^{*+}}^{-1} = \left(\frac{\mathscr{B}(B^+ \to K^{*+} \mu^+ \mu^-)}{\mathscr{B}(B^+ \to J/\psi(\mu^+ \mu^-)K^{*+})} \times \frac{\mathscr{B}(B^+ \to J/\psi(e^+ e^-)K^{*+})}{\mathscr{B}(B^+ \to K^{*+}e^+ e^-)}\right)$

FOR RARE MODE ONLY $0.045 < q_m^2 < 6 \text{ GeV}^2/c^4$

K*+ RECONSTRUCTED AS K*+>Kon+

 $R_{K^{*+}}^{-1} = 1.44_{-0.29-0.06}^{+0.32+0.09}$ $R_{K^{*+}} = 0.70^{+0.18+0.03}_{-0.13-0.04}$

AGREES WITH 5M-1.40

arXiv: 2201.03497

Run1 datasets

COMPLEMENTARY: SPIN 1/2 AND DIFFERENT FORM-FACTORS

DECAY No-NETR ZONTH ZONTHTON VE AND NEOPKIT

3-D FIT TO BDT, PSEUDO DECAY-TIME OF Z AND 92

 $R_{\Lambda_{c}^{+}} = \frac{\mathscr{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \tau^{-} \bar{\nu}_{\tau})}{\mathscr{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \mu^{-} \bar{\nu}_{\mu})}$ FROM DELPHI Phys. Lett. B585 (2004)

 $R_{\Lambda_c^+} = 0.242 \pm 0.026$ (stat) ± 0.040 (syst) ± 0.059 (ext BF)

IN AGREEMENT WITH SM

Summary

- · BRANCHING FRACTIONS AND LFU IN D-> SEL TRANSITIONS
- · RK SHOWS TENSIONS WITH SM (3.10)
- ·RKS AND RK*+ ALSO SUGGEST DEFICIT IN MUON MODE · BARYONIC DEGAYS LOOK PROMISING

arXiv:2101.08326

FU IN D->SEL TRANSITIONS H SM (3.10) FICIT IN MUON MODE ISING

Fig. by Martino Borsato

R_K fits to (non) resonant modes

 240×10^{3}

220 E

200

180 E

160

140 E

120 문

100 듣

80 E

60 E

40 E

20

Candidates /

 MeV/c^2)

(24)

Candidates

200

160

140

120

100

80

60

20

40 -

5000

$NON-RESONANT \rightarrow$

Decay mode	q^2 $[\mathrm{GeV}^2\!/c^4]$	$\begin{array}{c} m_{(J\!/\!\psi)}(K^+\ell^+\ell^-) \\ [\text{GeV}\!/c^2] \end{array}$
nonresonant e^+e^- resonant e^+e^- nonresonant $\mu^+\mu^-$	$\begin{array}{rrrr} 1.1 & - & 6.0 \\ 6.00 - 12.96 \\ 1.1 & - & 6.0 \end{array}$	$4.88 - 6.20 \ 5.08 - 5.70 \ 5.18 - 5.60$
resonant $\mu^+\mu^-$	8.68 - 10.09	5.18-5.60

RESONANT ->

 R_K cross-checks: $r_{J/\psi}$ and $R_{\psi(2S)}$

 $R_{\psi(2S)} = \frac{\mathscr{B}(B^+ \to K^+ \psi(2S)(\to \mu^+ \mu^-))}{\mathscr{B}(B^+ \to K^+ J/\psi(\to \mu^+ \mu^-))} \left/ \frac{\mathscr{B}(B^+ \to K^+ \psi(2S)(\to e^+ e^-))}{\mathscr{B}(B^+ \to K^+ J/\psi(\to e^+ e^-))} \right|$

$$r_{J/\psi} = \frac{\mathscr{B}(B^+ \to K^+ J/\psi (\to \mu^+ \mu^-))}{\mathscr{B}(B^+ \to K^+ J/\psi (\to e^+ e^-))}$$

$$R_{\psi(2S)} = 0.997 \pm 0.011$$
$$r_{J/\psi} = 0.987 \pm 0.020$$

 $(21 \text{ MeV}/c^2)$

80

70

60 E

$R_{K_{c}^{0}}$ fits to (non) resonant modes MeV/c^2 LHCb \mathbf{I} Data 9 fb⁻¹ LHCb \mathbf{I} Data 9 fb⁻¹ 25 - Total — Total $\cdots B^0 \rightarrow K_S^0 \mu^+ \mu^-$ (65 $\cdots B^0 \rightarrow K_S^0 e^+ e^-$ Comb. Back. Comb. Back. Candidates $B^0 \rightarrow K_S^0 \pi^+ \pi^ B^0 \rightarrow J/\psi(e^+e^-) K_{\rm s}^0$ Part. Reco. K 5400 5600 5000 5500 $m(K_S^0 \mu^+ \mu^-)$ [MeV/ c^2] $m(K_{S}^{0}e^{+}e^{-})$ [MeV/c²] / (16.5 MeV/c²) LHCb LHCb Data 9 fb⁻¹ Data 9 fb^{-1} - Total — Total 10^{3} $\cdots B^0 \rightarrow J/\psi(\mu^+\mu^-) K_S^0$ $\cdots B^0 \rightarrow J/\psi(e^+e^-) K_S^0$ Comb. Back. Candidates / 10² Comb. Back. $B_s^0 \rightarrow J/\psi(\mu^+\mu^-) K_s^0$ $B_s^0 \rightarrow J/\psi(e^+e^-) K_s^0$ 5400 5600 5200 5400 5600 5800 $m(J/\psi K_S^0)$ [MeV/ c^2] $m(J/\psi K_S^0)$ [MeV/ c^2]

NON-RESONANT ->

$R_{\Lambda_c^+}$ fit projections

$\cdot \Lambda_{b}^{\circ} \rightarrow \Lambda_{c}^{+} \subset \overline{\nabla_{z}}$ NORMALIZED TO $\Lambda_{b}^{\circ} \rightarrow \Lambda_{c}^{+} \pi \pi \pi$

$$\mathcal{K}(\Lambda_c^+) \equiv \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_{\tau})}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ 3\pi)}$$

· USE EXTERNAL INPUT TO OBTAIN RAT:

$$\mathcal{R}(\Lambda_c^+) = \mathcal{K}(\Lambda_c^+) \times \left(\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ 3\pi)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_{\mu})}\right)_{\text{external}}$$

1000 Candidates /

Candidates / (0.17)

R_{Λ^+} backgrounds

BACKGROUNDS: * $\Lambda_b^{+} \wedge_c^{+} \pi \pi \pi X$: SUPPRESSED REQUIRING Z DISPLACEMENT * $\Lambda_{b}^{+} \rightarrow \Lambda_{c}^{+} D_{s}(\rightarrow \pi\pi\pi X)$: SUPPRESED WITH Z DECAY DYNANICS WRONG-CHARGE DATA

* COMBINATORIAL PARAMETRISED ON NC SIDEBANDS AND

