

Institute of High Energy Physics Chinese Academy of Sciences

Hadronic $D_{(s)}$ decays at BESIII

Zehui Lu On behalf of the BESIII Collaboration

FPCP, 23-27th May, 2022

OutLine

✓ Introduction

✓ Amplitude Analyses

✓ Branching Fractions

✓ Summary

Hadronic charm physics

- FPCP 2021: https://indico.ihep.ac.cn/event/12805/session/40/contribution/224/material/slides/0.pdf
- \checkmark Probe non-perturbative QCD
 - states
 - violation and SU(3)-flavor symmetry breaking
- ✓ Help to understand hadron spectroscopy

 \checkmark Strong phase measurement with quantum correlated $\psi(3770) \rightarrow D^0 \overline{D}^0$ is crucial in the model-independent determinations of γ and charm mixing/direct *CPV*

• Measure the branching fractions of two-body decays with PP, VP, VV, SP and AP final

• Offer comprehensive information to explore the phenomenon of $D^0 \overline{D}^0$ mixing, CP

Datasets and double tag method

- $-D^{+(0)}$: 2.93 fb⁻¹ @ E_{cm} = 3.773 GeV. Collected in 2011
- $-D_s^+: 6.32 \text{ fb}^{-1} @ E_{cm} = 4.178 4.226 \text{ GeV}$. Collected in 2013-2017
 - Single Tag (ST) : reconstruct one $D_{(s)}$
 - Relative high background
 - Higher efficiency
 - Double Tag (DT) : reconstruct both $D_{(s)}$
 - Clean background for study of various decays
 - Systematics in the tag side almost cancel out
- Absolute branching fraction via DT : $\mathscr{B}_{sig} = \frac{1}{\Sigma_{\alpha} N_{\alpha}^{ST} \epsilon_{\alpha,sig}^{DT} / \epsilon_{\alpha}^{ST}}$

OutLine

Introduction

✓ Amplitude Analyses

A Branching Fractions

✓ Summary

- Destructive interference in $D_s^+ \to K^+ K^- \pi^+$ PRD 104, 012016 (2021)
- Constructive interference in $D_s^+ \to K_s^0 K_s^0 \pi^+$

Observation of isospin-one $a_0(1710)$

Consistent with the $K^*\bar{K}^*$ molecule hypothesis of $f_0(1710)$ $\mathscr{B}(D_s^+ \to K_S^0 K_S^0 \pi^+) = (0.68 \pm 0.04_{\text{stat.}} \pm 0.01_{\text{syst.}})\%$

arXiv:2204.09614

	Phase (rad)	FF (%)	BF (10^{-3})	σ
$(892)^0 K^+$	0.0(fixed)	$32.7\pm2.2\pm1.9$	$4.77 \pm 0.38 \pm 0.32$	> 10
$(892)^+ K_S^0$	$-0.16 \pm 0.12 \pm 0.11$	$13.9\pm1.7\pm1.3$	$2.03 \pm 0.26 \pm 0.20$	> 10
$(980)^{+}\pi^{0}$	$-0.97 \pm 0.27 \pm 0.25$	$7.7\pm1.7\pm1.8$	$1.12 \pm 0.25 \pm 0.27$	6.7
$(1410)^0 K^+$	$0.17 \pm 0.15 \pm 0.08$	$6.0\pm1.4\pm1.3$	$0.88 \pm 0.21 \pm 0.19$	7.6
$(710)^{+}\pi^{0}$	$-2.55 \pm 0.21 \pm 0.07$	$23.6\pm3.4\pm2.0$	$3.44 \pm 0.52 \pm 0.32$	> 10

Amplitude analysis of $D_s^+ \to \pi^+ \pi^0 \pi^0$

First amplitude analysis $\mathscr{B}(D_s^+ \to f_0(980)\pi^+, f_0(980) \to \pi^0\pi^0)$ $= (2.8 \pm 0.4 \pm 0.4) \times 10^{-3}$ Measured for the first time No significant signal of $f_0(500)$

JHEP01(2022)052

 $R(f_0(980)) = 2.2 \pm 0.5$ $R = \frac{f_{0(2)}(\pi^+\pi^-)}{f_{0(2)}(\pi^0\pi^0)}$ $R(f_0(1370)) = 2.7 \pm 1.4$ $R(f_2(1270)) = 2.4 \pm 1.8$ consistent with $D_s^+ \to \pi^+ \pi^+ \pi^$ arXiv:2108.10050

 $\mathscr{B}(D_s^+ \to \pi^+ \pi^0 \pi^0) = (0.50 \pm 0.04_{\text{stat.}} \pm 0.02_{\text{syst.}})\%$ Improved by a factor of two compared with PDG

8

Amplitude analysis of $D_s^+ \rightarrow \pi^+ \pi^0 \eta'$

D	ecay	$\mathcal{B}(\%)$		
Theory	$D_s^+ o ho^+ \eta'$	3.0 ± 0.5 [1]	1.7 [2] 1.6 [2]	
	$D_s^+ \to \pi^+ \pi^0 \eta'$	$5.6\pm0.5\pm0.6$	CLEO	
Experiment	$D_s^+ o ho^+ \eta'$	$5.8\pm1.4\pm0.4$	BESIII	
	$D_s^+ \to \pi^+ \pi^0 \eta'$	< 5.1		
	(nonresonant)	(90% confidence level)		

Large deviation between theoretical predictions and experimental measurements [1] Phys. Rev. D 84 (2011) 074019 [2] Phys. Rev. D 89 (2014) 054006

Branching fraction measurement with best precision : $\mathscr{B}(D_s^+ \to \pi^+ \pi^0 \eta') = (6.15 \pm 0.25_{\text{stat.}} \pm 0.18_{\text{syst.}})\%$

 $\mathscr{B}(D_s^+ \to (\pi^+ \pi^0)_S \eta') < 0.1 \% @ 90\% \text{ CL}$ $\mathscr{B}(D_{s}^{+} \to (\pi^{+}\pi^{0})_{P}\eta') < 0.74\% @ 90\% \text{ CL}$

JHEP04(2022)058

Amplitude analysis of $D_{s}^{+} \rightarrow K^{+}\pi^{+}\pi^{-}$

$\operatorname{MeV}(c^2)$ **5** 40 Events 7 Pull -3 $M_{\mathrm{K}^+\pi^+}$ (GeV/ c^2)

arXiv:2205.08844

NR is replaced by $K^+f_0(500)$, $K^+f_0(980)$ and $K^+f_0(1370)$

Dominant processes: $\mathscr{B}(D_{s}^{+} \to K^{+}\rho^{0})$ $= (1.99 \pm 0.20_{\text{stat.}} \pm 0.22_{\text{syst.}}) \times 10^{-3}$ $\mathscr{B}(D_{s}^{+} \to K^{*}(892)^{0}\pi^{+})$ $= (1.85 \pm 0.13_{\text{stat.}} \pm 0.11_{\text{syst.}}) \times 10^{-3}$ Much more precise

$$\mathscr{B}(D_s^+ \to K^+ \pi^+ \pi^-)$$

= (6.11 ± 0.18_{stat.} ± 0.11_{syst.}) ×

$$A_{CP} = \frac{\mathscr{B}(D_s^+) - \mathscr{B}(D_s^-)}{\mathscr{B}(D_s^+) + \mathscr{B}(D_s^-)}$$
$$= (3.3 \pm 3.7_{\text{stat.}} \pm 1.3_{\text{syst.}})\%$$

No significant *CP* violation

10

OutLine

✓ Introduction

Amplitude Analyses

✓ Branching Fractions

✓ Summary

11

Polarizations in $D^0 \rightarrow \omega \phi$

Single tag method — only one D^0 meson is reconstructed

Phys. Rev. Lett. 128, 011803 (2022)

- Black dots: data
- Green: longitudinal
- Cyan: PHSP

- ω and ϕ are transversely polarized
- Black curves: fit results
 Contradict existing model

predictions

Phys. Rev. D 81, 114020 (2010); J. High Energy Phys. 03 (2014) 042

Measurements of other $D_{(s)}$ decays

 \checkmark Amplitude analysis of $D_s^+ \rightarrow \pi^+ \pi^- \eta$: Phys. Rev. D 104, L071101 (2021) \checkmark Amplitude analysis of $D_s^+ \rightarrow \pi^+ \pi^- : arXiv:2108.10050, Submitted to PRD$ $\checkmark \mathscr{B}(D^0 \to K_I^0 X, X = \phi/\eta/\omega/\eta') : \text{arXiv:2202.13601, accepted by PRD}$ $\checkmark \mathscr{B}(D^0 \to K^- \pi^+ \omega) : \text{Phys. Rev. D 105, 032009 (2022)}$ $\sqrt{\mathscr{B}(D^+ \to K^+ \pi^0 \pi^0)}$: arXiv:2110.10999, Submitted to JHEP $\sqrt{\mathscr{B}(D^0 \to K^+ \pi^- \pi^0)}$: arXiv:2203.01555, Submitted to PRD

- \checkmark Amplitude analysis of $D_s^+ \rightarrow K^+ K^- \pi^+ \pi^-$: arXiv:2203.06688, Submitted to JHEP

Summary

- ✓ Amplitude analyses show great power
 - Establishment of isospin-one particle $-a_0(1710)$
 - Validation of various theories
- Large samples for precise measurements
 - Puzzle of $P \rightarrow VV$ polarization
- ✓ Bright future of Hadronic D decays
 - Lots of results are ready to be published
 - 20 fb⁻¹ ψ (3770) data at BESIII by next year CPC 44, 040001 (2020)

Thanks for your attention!

Back up

Tag modes of DT analyses

/

 $D_s^- \to K^- K^+ \pi^ D_s^- \to K_s^0 K^- \pi^0$ $D_{\rm s}^- \to K^+ K^- \pi^- \pi^0$ $D_s^- \to K_s^0 K^- \pi^- \pi^+$ $D_s^- \rightarrow K_s^0 K^+ \pi^- \pi^ D_s^- \to \pi^- \pi^- \pi^+$ $D_s^- \to \pi^- \eta$ $D_s^- \to \pi^- \pi^0 \eta$ $D_s^- \to \pi^- \eta'$ $D_s^- \to K_s^0 K^ D_{\rm s}^- \to K^- \pi^+ \pi^-$

 $D_{s}^{+} \to K_{S}^{0}K_{S}^{0}\pi^{+} \quad D_{s}^{+} \to K_{S}^{0}K^{+}\pi^{0} \quad D_{s}^{+} \to \pi^{+}\pi^{0}\pi^{0} \quad D_{s}^{+} \to \pi^{+}\pi^{0}\eta' \quad D_{s}^{+} \to K^{+}\pi^{+}\pi^{-}$

Definitions in $D^0 \rightarrow \omega \phi$

 θ_{ω} is the angle between $\mathbf{p}_{\pi^+}^{\omega} \times \mathbf{p}_{\pi^-}^{\omega}$ and $-\mathbf{p}_{D^0}^{\omega}$ in the ω rest frame, and θ_K is the angle between $\mathbf{p}_{K^-}^{\phi}$ and $-\mathbf{p}_{D^0}^{\phi}$ in the ϕ rest frame. Here, $\mathbf{p}_{\pi^+}^{\omega}$, $\mathbf{p}_{\pi^-}^{\omega}$, $\mathbf{p}_{K^-}^{\phi}$, and $\mathbf{p}_{D^0}^{\omega/\phi}$ are the momenta of the π^+ , π^- , K^- , and D^0 in the rest frame of either the ω or ϕ meson, respectively.

