# Exploring New Physics in $D^+_{(s)} o \eta^{(\prime)} \bar{\ell} \nu_{\ell}$ decays

## Karthik Jain M



## University of Hyderabad



Karthik Jain (UoH)

May 24, 2022 1 / 27

- Introduction
- Theoretical Framework
- Constraints on New Couplings
- Sensitivity to NP
- Conclusion

590

# **Motivation**

- Flavor anomalies in *b*-hadron decays Indications of Beyond SM (BSM) Physics
- Discrepancies seen in decays:  $b o s \ell^+ \ell^-$ ,  $b o c au^- ar
  u_ au$
- Lepton flavor universality (LFU) violation

Tensions at the  $(2-3)\sigma$  level between measured and SM predictions for the ratios

$$R_{D^{(*)}} = \frac{(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_{\tau})}{(\bar{B} \to D^{(*)}l^-\bar{\nu}_{\ell})}, \quad R_{K^{(*)}} = \frac{(\bar{B} \to K^{(*)}\mu^+\mu^-)}{(\bar{B} \to K^{(*)}e^+e^-)}$$

• Probe similar phenomena and possible new physics (NP) sensitivity in the charm sector. We focus on  $c \to (s, d) \bar{\ell} \nu_{\ell}$  charge-current transitions here, in particular  $D^+_{(s)} \to \eta^{(')} \bar{\ell} \nu_{\ell}$  decays.

(日)

# **Theoretical Framework**

• The effective Lagrangian for  $c o (s,d) ar{\ell} 
u_\ell$  transitions including NP contributions is  $^1$ 

$$\mathcal{L}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{cq} \left[ (1 + C_{V_L}^{\ell}) O_{V_L}^{\ell} + C_{V_R}^{\ell} O_{V_R}^{\ell} + C_{S_L}^{\ell} O_{S_L}^{\ell} + C_{S_R}^{\ell} O_{S_R}^{\ell} + C_T^{\ell} O_T^{\ell} \right] + h.c.$$

with fermionic operators defined as

$$\begin{aligned} O_{V_L}^{\ell} &= (\bar{q}\gamma^{\mu}P_Lc)(\bar{\nu}_{\ell}\gamma_{\mu}P_L\ell) \quad , \quad O_{V_R}^{\ell} &= (\bar{q}\gamma^{\mu}P_Rc)(\bar{\nu}_{\ell}\gamma_{\mu}P_L\ell), \\ O_{S_L}^{\ell} &= (\bar{q}P_Lc)(\bar{\nu}_{\ell}P_R\ell) \quad , \quad O_{S_R}^{\ell} &= (\bar{q}P_Rc)(\bar{\nu}_{\ell}P_R\ell), \\ O_{T}^{\ell} &= (\bar{q}\sigma^{\mu\nu}P_Lc)(\bar{\nu}\ell\sigma_{\mu\nu}P_R\ell) \end{aligned}$$

and  $C_i^{\ell}(i = V_L, V_R, S_L, S_R, T)$  are corresponding Wilson coefficients.

**EPCP 2022** 

 $^{1}X$ . Leng et al., Chin. Phys. C 45 (2021) 063107

Karthik Jain (UoH)

May 24, 2022 4 / 27

 $D \to P \bar{\ell} \nu_{\ell}$  :

۲

۵

Hadronic matrix elements :

$$egin{aligned} &\langle P(p_2) | ar{q} \gamma^\mu c | D(p_1) 
angle = f_+(q^2) \left[ (p_1 + p_2)^\mu - rac{m_D^2 - m_P^2}{q^2} q^\mu 
ight] \ &+ f_0(q^2) rac{m_D^2 - m_P^2}{q^2} q^\mu \end{aligned}$$

$$egin{aligned} \langle P(p_2) | ar{q} c | D(p_1) 
angle &= rac{q^\mu}{m_c - m_q} \langle P(p_2) | ar{q} \gamma^\mu c | D(p_1) 
angle \ &= rac{m_D^2 - m_P^2}{m_c - m_q} f_0(q^2) \end{aligned}$$

## Form factors:

• We use form factors obtained from LCSR <sup>2</sup>. Parametrisation is given by

$$F^{i}(q^{2}) = rac{F^{i}(0)}{1 - arac{q^{2}}{M_{D}^{2}} + b\left(rac{q^{2}}{M_{D}^{2}}
ight)^{2}}$$

| Decay               | F(0)           |                                  | а                      | b                                |
|---------------------|----------------|----------------------------------|------------------------|----------------------------------|
| $D  ightarrow \eta$ | <i>f</i> +     | $0.556^{+0.056}_{-0.053}$        | $1.25^{-0.04}_{+0.05}$ | $0.42^{-0.06}_{+0.05}$           |
|                     | f <sub>0</sub> | $0.556\substack{+0.056\\-0.053}$ | $0.65^{-0.01}_{+0.02}$ | $-0.22^{-0.03}_{+0.02}$          |
| $D_s 	o \eta$       | <i>f</i> +     | $0.611\substack{+0.062\\-0.054}$ | $1.20^{-0.02}_{+0.03}$ | $0.38^{-0.01}_{+0.01}$           |
|                     | $f_0$          | $0.611\substack{+0.062\\-0.054}$ | $0.64^{-0.01}_{+0.02}$ | $-0.18\substack{+0.04 \\ -0.03}$ |

<sup>2</sup>Y-L. Wu, M. Zhong, Y-B. Zuo, Int. J. Mod. Phys. A 21 (2006) 6125 ( ) + ( ) + ( )

Karthik Jain (UoH)

FPCP 2022

• The helicity amplitudes are

$$H^P_{V,\lambda_W}(q^2) = \epsilon^*_\mu(\lambda_W) \langle P(p_2) | \bar{q} \gamma^\mu c | D(p_1) \rangle$$

$$egin{aligned} H^P_{V,0} &= \sqrt{rac{\lambda_P(q^2)}{q^2}} f_+(q^2) \ H^P_{V,t} &= rac{M^2_D - M^2_P}{\sqrt{q^2}} f_0(q^2) \end{aligned}$$

• The scalar helicity amplitudes are

$$H_{S}^{P}=rac{M_{D}^{2}-M_{P}^{2}}{m_{c}-m_{q}}f_{0}(q^{2}),$$

where

$$\lambda_P(q^2) = [(M_D - M_P)^2 - q^2][(M_D + M_P)^2 - q^2]$$

# Angular Decay distribution

## • The two-fold differential angular decay distribution is given by

$$\frac{d^2 \Gamma(D \to P\ell^+ \nu_{\ell})}{dq^2 d \cos \theta_{\ell}} = \frac{G_F^2 |V_{cq}|^2 \sqrt{Q_+ Q_-}}{256 \pi^3 M_D^3} \left(1 - \frac{m_{\ell}^2}{q^2}\right)^2 \left[q^2 A_1^P + \sqrt{q^2} m_{\ell} A_2^P + m_{\ell}^2 A_3^P\right]$$

where

$$Q_{\pm}=(M_D\pm M_P)^2-q^2$$

 ${\sf and}$ 

$$A_{1}^{P} = |C_{S_{L}} + C_{S_{R}}|^{2}|H_{S}^{P}|^{2} + |1 + C_{V_{L}} + C_{V_{R}}|^{2}|H_{V,0}^{P}|^{2}\sin^{2}\theta_{\ell}$$

$$\begin{split} A_{2}^{P} = & 2 \left\{ Re[(C_{S_{L}} + C_{S_{R}})(1 + C_{V_{L}} + C_{V_{R}})^{*}]H_{S}^{P}H_{V,t}^{P} \right\} \\ & - 2 \left\{ Re[(C_{S_{L}} + C_{S_{R}})(1 + C_{V_{L}} + C_{V_{R}})^{*}]H_{S}^{P}H_{V,0}^{P} \right\} \cos \theta_{\ell} \end{split}$$

$$A_{3}^{P} = |1 + C_{V_{L}} + C_{V_{R}}|^{2} (|H_{V,0}^{P}|^{2} \cos^{2} \theta_{\ell} - 2H_{V,0}^{P}H_{V,t}^{P} \cos \theta_{\ell} + |H_{V,t}^{P}|^{2})$$

Differential branching fraction :

Integrating out  $\cos \theta_{\ell}$  terms, we get the differential decay rate  $(\frac{d\Gamma}{d\sigma^2})$ . The differential branching fraction is

$$\begin{split} \frac{d\mathcal{B}}{dq^2} &= \frac{G_F^2 |V_{cq}|^2 \tau_D \sqrt{Q_+ Q_-}}{256 \pi^3 M_D^3} \left(1 - \frac{m_\ell^2}{q^2}\right) \\ &\left\{\frac{2}{3} \left[|1 + C_{V_L} + C_{V_R}|^2 (|H_{V,0}^P|^2 + 3|H_{V,t}^P|^2)\right] m_\ell^2 \right. \\ &\left. + 4 \left[(C_{S_L} + C_{S_R})(1 + C_{V_L} + C_{V_R}) \right. \\ &\left. H_S^P H_{V,t}^P \right] m_\ell \sqrt{q^2} + \left[2(C_{S_L} + C_{S_R})^2 |H_S^P|^2 \right. \\ &\left. + \frac{4}{3} |1 + C_{V_L} + C_{V_R}|^2 |H_{V,0}^P|^2 \right] q^2 \right\} \end{split}$$

æ May 24, 2022 9 / 27

590

 $q^2$ -dependent Observables :

• Forward-backward asymmetry in the lepton-side :

$$A_{FB}^{\ell}(q^{2}) = \frac{\int_{0}^{1} d\cos\theta_{\ell} \frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{\ell}} - \int_{-1}^{0} d\cos\theta_{\ell} \frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{\ell}}}{\int_{0}^{1} d\cos\theta_{\ell} \frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{\ell}} + \int_{-1}^{0} d\cos\theta_{\ell} \frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{\ell}}}$$

• Lepton polarization asymmetry

$$P_F^{\ell}(q^2) = \frac{\frac{d\Gamma(\lambda_{\ell}=1/2)}{dq^2} - \frac{d\Gamma(\lambda_{\ell}=-1/2)}{dq^2}}{\frac{d\Gamma(\lambda_{\ell}=1/2)}{dq^2} + \frac{d\Gamma(\lambda_{\ell}=-1/2)}{dq^2}}$$

• Tilted parabola

$$ilde{W}( heta_\ell) = rac{a+b\cos heta_\ell+c\cos^2 heta_\ell}{2(a+c/3)}$$

where a, b, c are  $q^2$ -dependent coefficients. Convexity parameter is

$$C_F^{\ell}(q^2) = \frac{d^2 \tilde{W}(\theta_{\ell})}{d(\cos \theta_{\ell})^2} = \frac{c}{a + c/3}$$

- The parameter space of new couplings is obtained using available experimental measurements of semileptonic D meson decays,  $\mathcal{B}(D \to \eta^{(\prime)} \ell^+ \nu_{\ell})$ .
- Semileptonic decay : branching ratios are <sup>3</sup>

| Decay                                   | Experiment                  |  |  |
|-----------------------------------------|-----------------------------|--|--|
| ${\cal B}(D^+ 	o \eta \mu^+  u_\mu)$    | $(1.04\pm0.11)	imes10^{-3}$ |  |  |
| ${\cal B}(D^+_s 	o \eta \mu^+  u_\mu)$  | $(2.4\pm0.5)	imes10^{-2}$   |  |  |
| ${\cal B}(D_s^+ 	o \eta' \mu^+  u_\mu)$ | $(11.0\pm5.0)	imes10^{-3}$  |  |  |

- We consider complex couplings in our work.
- For  $c \to s$  transitions, the parameter space for the scalar coupling  $C_S = C_{S_L} + C_{S_R}$  is obtained from the observable  $\mathcal{R}$  defined below

$$\mathcal{R}\equiv rac{\mathcal{B}(D o\eta\ell^+
u_\ell)}{\mathcal{B}(D o\eta'\ell^+
u_\ell)}$$

<sup>3</sup>P. Zyla et. al. PTEP 2020(8),083C01(2020)

Karthik Jain (UoH)

FPCP 2022

May 24, 2022 11 / 27

- For  $c \to d$  transitions, the parameter space for the scalar coupling  $C_S = C_{S_L} + C_{S_R}$  is obtained using  $\mathcal{B}(D^+ \to \eta \bar{\ell} \nu_{\ell})$ .
- For the vector coupling  $C_V = C_{V_L} + C_{V_R}$ , the parameter space is obtained using  $\mathcal{B}(D^+ \to \eta \bar{\ell} \nu_\ell)$ .

< ロ > < 回 > < 回 > < 回 > < 回 >

## $c \rightarrow s$ transition



Figure 1: The allowed parameter space of the scalar coupling  $C_S = C_{S_I} + C_{S_R}$  using  $\mathcal{R}$ .

May 24, 2022 13 / 27

590

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ

#### $c \rightarrow s$ transition



Figure 2: The allowed parameter space of the vector coupling  $C_V = C_{V_L} + C_{V_R}$  using  $\mathcal{B}(D_s^+ \to \eta \bar{\ell} \nu_{\ell})$ .

## $c \rightarrow d$ transition



Figure 3: The allowed parameter space of the scalar coupling  $C_S = C_{S_L} + C_{S_R}$  using  $\mathcal{B}(D^+ \to \eta \bar{\ell} \nu_{\ell})$ .

・ロト ・四ト ・ヨト ・ヨト

#### $c \rightarrow d$ transition



Figure 4: The allowed parameter space of the vector coupling  $C_V = C_{V_L} + C_{V_R}$  using  $\mathcal{B}(D^+ \to \eta \bar{\ell} \nu_{\ell})$ .

・ロト ・四ト ・ヨト ・ヨト

NP Sensitivity for  $D_s^+ \rightarrow \eta \mu^+ \nu_\mu$ 

2 May 24, 2022 17 / 27

996



Figure 5:  $q^2$ -dependence of various observables for  $D_s^+ o \eta \mu^+ 
u_\mu$  in presence of  $C_S$ 

590

(日) (四) (日) (日) (日)



Figure 6:  $q^2$ -dependence of differential branching fraction for  $D_s^+ \to \eta \mu^+ \nu_\mu$  in presence of  $C_V$ .

Dac

・ロト ・四ト ・ヨト ・ヨ

NP Sensitivity for  $D_s^+ \rightarrow \eta' \mu^+ \nu_{\mu}$ 

2 May 24, 2022 20 / 27

996



Figure 7:  $q^2$ -dependence of various observables for  $D^+_s o \eta' \mu^+ 
u_\mu$  in presence of  $C_S$ 

590

・ロト ・四ト ・ヨト ・ヨト



Figure 8:  $q^2$ -dependence of differential branching fraction for  $D_s^+ \to \eta' \mu^+ \nu_\mu$  in presence of  $C_V$ .

590

・ロト ・回 ト ・ヨト ・

# NP Sensitivity for $D^+ \rightarrow \eta \mu^+ \nu_\mu$

2 May 24, 2022 23 / 27

996



Figure 9:  $q^2$ -dependence of various observables for  $D^+ o \eta \mu^+ 
u_\mu$  in presence of  $C_S$ 

590

・ロト ・四ト ・ヨト ・ヨト



 $_{\rm Figure \ 10:} q^2$ -dependence of differential branching fraction for  $D^+ o \eta \mu^+ \nu_\mu$  in presence of  $C_V$ .

Dac

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ

# Conclusion

- The decay modes  $D^+_{(s)} \rightarrow \eta^{(')} \bar{\ell} \nu_{\ell}$  are analyzed within the SM and beyond using an effective Lagrangian approach.
- The parameter space for NP couplings are obtained using available experimental measurements of semileptonic *D* meson decays.
- NP sensitivity of various  $q^2$ -dependent observables such as  $\frac{dB}{dq^2}(q^2)$ ,  $A_{FB}^{\ell}(q^2)$ ,  $C_{F}^{\ell}(q^2)$  and  $P_{F}^{\ell}(q^2)$  are probed.
- Deviations from SM predictions are observed in the presence of the new couplings. For the scalar couplings, the sensitivity is more pronounced in  $C_F^{\ell}(q^2)$  and  $P_F^{\ell}(q^2)$ . For the vector coupling, except for the differential branching fraction, the dependence cancels out in the other  $q^2$ -dependent observables.
- Studies of charm meson decays as those in this work provide a unique environment to probe flavor physics beyond SM in the up-sector.
- Precision future measurements will help in obtaining stronger constraints on possible NP contributions.

500

(日)

Thank You

・ロト ・四ト ・ヨト ・ヨト