

Λ_c decays at BESIII

Yang Gao

On behalf of the BESIII Collaboration

University of Science and Technology of China

Outline

- ≻Recap analysis of Λ_c^+ at BESIII
- ➢ BESIII experiment
- \succ Introduction to $\Lambda_c^+ \rightarrow n\pi^+$
- ≻Prediction of two-body decays of Λ_c^+
- $> \Lambda_c^+ \rightarrow n\pi^+$ at BESIII
 - Double-tag method
 - Singly-tag yield
 - Distribution of $\Lambda_c^+ \to n\pi^+$
 - Results of $\Lambda_c^+ \to n\pi^+$
- ≻The future
- ➤Summary

Recap analysis of Λ_c^+ at **BESIII**

2014: 0.567 fb⁻¹ at 4.6 GeV BEST Proposal of the BEPCII upgrade • Λ_{c}^{+} hadronic decay $\square BF(\Lambda_c^+ \rightarrow pK^-\pi^+) + 11 hadronic modes : PRL 116, 052001 (2016)$ $\square BF(\Lambda_{c}^{+} \rightarrow pK^{+}K^{-}, p\pi^{+}\pi^{-}) : PRL 117, 232002 (2016)$ • optimized energy at 2.35 GeV with luminosity 3 times higher than the current $\square BF(\Lambda_c^+ \rightarrow nK_s\pi^+)$: PRL 118, 12001 (2017) BEPCII. $\square BF(\Lambda_c^+ \rightarrow p\eta, p\pi^0)$: PRD 95, 111102(R) (2017) • BES MarkI $R=\sigma(e^+e^- \rightarrow hadron)$ $\square BF(\Lambda_c^+ \to \Sigma^- \pi^+ \pi^0)$: PLB 772, 388 (2017) *...SL.A.C... 5 Nearly blank at 5-7Ge pluto >μ⁺μ⁻ $\square BF(\Lambda_c^+ \to \Xi^{(*)0}K^+)$: PLB 783,200 (2018) KEDR 4 $\square BF(\Lambda_c^+ \to \Lambda \eta \pi^+)$: PRD99, 032010 (2019) $\square BF(\Lambda_c^+ \rightarrow \Sigma^+ \eta, \Sigma^+ \eta') : CPC43, 083002 (2019)$ o(e⁺e⁻ 3 \square $\Lambda_c^+ \rightarrow$ BP decay asymmetries : PRD100, 072004 (2019) $\square BF(\Lambda_c^+ \to pK_s\eta)$: PLB 817, 136327 (2021) 2 $\Omega_c \overline{\Omega}_c$ \square Λ_c^+ spin determination : PRD 103, L091101 (2021) 4 6 • Λ_{c}^{+} semi-leptonic decay \sqrt{s} (GeV) $\square BF(\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e)$: PRL 115, 221805 (2015) 1×10^{3} $\square BF(\Lambda_{c}^{+} \rightarrow \Lambda \mu^{+} \nu_{\mu})$: PLB 767, 42 (2017) 3倍 4.95 ~ 5.6 GeV: new energy 8×1032 coverage of BEPCII-upgrade Λ_{c}^{+} inclusive decay $\Lambda_{c}^{+} \rightarrow \Lambda + X$ $\square BF(\Lambda_c^+ \rightarrow \Lambda X)$: PRL 121, 062003 (2018) 4×10^{3} : PRL 121 251801 (2018) $\square BF(\Lambda_c^+ \rightarrow eX)$ $\square BF(\Lambda_c^+ \rightarrow K_s^0 X)$ 2×10^{3} : EPJC 80, 935 (2020) • $\Lambda_{c}^{+}\Lambda_{c}^{-}$ pair cross section : PRL 120,132001(2018). 1.5 2.5 Beam energy (GeV) 2021/6/4

Reference: FPCP 2021:

https://indico.ihep.ac.cn/event/12805/session/44/contribution/195/material/slides/0.pdf

15

BESIII experiment

Introduction to $\Lambda_c^+ \rightarrow n\pi^+$

Prediction of two-body decays of Λ_c^+

Λ_c^+	$\mathrm{SU}(3)_f$	Cheng et al.	Our work	Expt.]
$10^4 \mathcal{B}_{\Sigma^+ K^0}$	10.5 ± 1.4	14.4	19.1 ± 4.8		
$10^4 \mathcal{B}_{\Sigma^0 K^+}$	5.2 ± 0.7	7.2	5.5 ± 1.6	5.2 ± 0.8	
$10^4 \mathcal{B}_{p\pi^0}$	$1.1^{+1.3}_{-1.1}$	1.3	$0.8\substack{+0.9 \\ -0.8}$	0.8 ± 1.4	
$10^4 \mathcal{B}_{p\eta}$	11.2 ± 2.8	12.8	11.4 ± 3.5	12.4 ± 3.0	$ \vdash \longrightarrow \dashv$
$10^4 \mathcal{B}_{p\eta'}$	24.5 ± 14.6		7.1 ± 1.4		
$10^4 \mathcal{B}_{n\pi^+}$	7.6 ± 1.1	0.9	7.7 ± 2.0		
$10^4 \mathcal{B}_{\Lambda^0 K^+}$	6.6 ± 0.9	10.7	5.9 ± 1.7	6.1 ± 1.2	

Ref: J. High Energy Phys. 02 (2020) 165

- Challenge: Small branching fractions of 10⁻³ or below
- Provide more complete experimental inputs
- Input more precise results from experimental studies
- From $\mathcal{B}(\Lambda_c^+ \to n\pi^+)/\mathcal{B}(\Lambda_c^+ \to p\pi^0)$, test different models

Double-tag method

 $N_{i ST} = 2N_0 \times \mathcal{B}_i \times \varepsilon_{i ST}$ $N_{is DT} = 2N_0 \times \mathcal{B}_i \times \mathcal{B}_s \times \varepsilon_{is DT}$ $\mathcal{B}_s = \frac{\Sigma N_{is DT}}{\Sigma N_{is DT}}$

- $N_{i ST}$: The yields in the *i* singly tagged(ST) mode.
- $\varepsilon_{i ST}$: The efficiency in the *i* singly tagged(ST) mode.
- $N_{is DT}$: The signal yields in the *i* singly tagged(ST) mode.
- $\varepsilon_{is DT}$: The signal efficiency in the *i* singly tagged(ST) mode.
- N_0 : The number of $\overline{\Lambda}_c^- \Lambda_c^+$ production.
- \mathcal{B}_s : The branching fraction of the signal decay.

Singly-tag yield

- ✓ Data sample: data @ 4.612-4.699 GeV
- ✓ 10 singly tagged modes at BESIII
- $\checkmark N_{ST} = 90692 \pm 359$ with 10 tags @ 4.612-4.699 GeV
- ✓ Left figure: $\sqrt{s} = 4.682$ GeV as example

$$M_{\rm BC} = \sqrt{E_{\rm beam}^2 / c^4 - |\vec{p}_{\bar{\Lambda}_c}|^2 / c^2}$$

- E_{beam} is the beam energy.
- $\vec{p}_{\overline{\Lambda}c}$ is the momentum of the $\overline{\Lambda}c$ candidate.

FPCP 2022

Distribution of $\Lambda_c^+ \rightarrow n\pi^+$

$$M_{\rm rec}^2 = (E_{\rm beam} - E_{\pi^+})^2/c^4 - |\rho \cdot \vec{p}_0 - \vec{p}_{\pi^+}|^2/c^2$$

• E_{π^+} and \vec{p}_{π^+} are the energy and momentum of π^+ candidate

•
$$\rho = \sqrt{E_{\text{beam}}^2 / c^2 - m_{\Lambda_c^+}^2 c^2}$$
 Phys. Rev. Lett. 128 (2022) 142001

•
$$\vec{p}_0 = -\vec{p}_{\overline{\Lambda}_c} / |\vec{p}_{\overline{\Lambda}_c}|$$
 is the unit direction opposite to the ST $\overline{\Lambda}_c^-$

- ✓ Select the signal pion after reconstructing the ST $\overline{\Lambda}_c^-$.
- \checkmark Require no charged tracks from the missing part.
- ✓ Extract the yields from the invariant mass of the missing part.

Background

Results of $\Lambda_c^+ \rightarrow n\pi^+$

✓ Red peak: Λ⁺_c → nπ⁺ 7.3σ
 ✓ Blue peak: Λ⁺_c → Λπ⁺
 ✓ Green peak: Λ⁺_c → Σ⁰π⁺
 ✓ Green peak: Λ⁺_c → Σ⁰π⁺

Decay	Yields	Branching fraction
$\Lambda_c^+ \to n\pi^+$	50 ± 9	$(6.6 \pm 1.2_{\text{stat}} \pm 0.4_{\text{syst}}) \times 10^{-4}$
$\Lambda_c^+\to\Lambda\pi^+$	376 ± 22	$(1.31 \pm 0.08_{\text{stat}} \pm 0.05_{\text{syst}}) \times 10^{-2}$
$\Lambda_c^+\to \Sigma^0\pi^+$	343 ± 22	$(1.22 \pm 0.08_{\text{stat}} \pm 0.07_{\text{syst}}) \times 10^{-2}$

$$\checkmark \text{ Define } R = \mathcal{B}(\Lambda_c^+ \to n\pi^+) / \mathcal{B}(\Lambda_c^+ \to p\pi^0)$$

✓ Use $\mathcal{B}(\Lambda_c^+ \to p\pi^0) < 8.0 \times 10^{-5}$ at 90% C.L. of Belle from Phys. Rev. D 103, 072004 (2021)

> 7.2 at 90% C.L.

Phys. Rev. Lett. 128 (2022) 142001

R

Results of $\Lambda_c^+ \rightarrow n\pi^+$

Decay	Yields	Branching fraction this work
$\Lambda_c^+ \to n\pi^+$	50 ± 9	$(6.6 \pm 1.2_{\text{stat}} \pm 0.4_{\text{syst}}) \times 10^{-4}$
R		> 7.2 at 90% C.L.

$\mathcal{B}(\Lambda_c^+ \to n\pi^+) \times 10^{-4}$	R	Reference	
4	2	PRD 55, 7067 (1997)	
9	2	PRD 93, 056008 (2016)	
11.3 ± 2.9	2	PRD 97, 073006 (2018)	
8 or 9	4.5 or 8.0	PRD 49, 3417 (1994)	
2.66	3.5	PRD 97, 074028 (2018)	
6.1 ± 2.0	4.7	PLB 790, 225 (2019)	
7.7 ± 2.0	9.6	JHEP 02 (2020) 165	

- ✓ For the branching fraction of $\Lambda_c^+ \to n\pi^+$ and the ratio, it is contradictory between our measurement and these references.
- The branching fraction is consistent with our
 result but the ratio is contradictory with it.
- ✓ The branching fraction and ratio are consistent with our results, but the uncertainty of $\mathcal{B}(\Lambda_c^+ \to p\pi^0)$ is about 100%.

The future: hadronic decays

The future: semi-leptonic decays

Sensitivity of semi-leptonic decays: $\Lambda_c^+ \rightarrow pK^-e^+\nu_e \ \Lambda_c^+ \rightarrow \Lambda e^+\nu_e \ \dots$

- Find the hint of $\Lambda_c^+ \rightarrow pK^-e^+\nu_e^-$ With studies of inclusive MC, Use DT method. Clean signal peak.

Measurement of $\Lambda_c^+ \to \Lambda e^+ \nu_e$

Use DT method.

- $\Gamma_s = \frac{d\Gamma}{dq^2 d\cos\theta_{\Lambda} d\cos\theta_W d\chi} \sim F(f_1, f_2)$ f_1, f_2 is form factor
 - MC simulation, 6 times MC of data at 4600 GeV, $f_2/f_1 = -0.31 \pm 0.08(25\%)$, input -0.31;
 - with 16 times MC of data at 4600 GeV, the precision for f_2/f_1 will be ~15%
 - If combining electron and muon channels, the precision of f_2/f_1 will be expected to reach ~12%

The future: inclusive decays

Sensitivity of inclusive decays: $\overline{\Lambda}_c^- \rightarrow \overline{n} + X \dots$

	Inclusive modes	- Measurement of $\overline{\Lambda}_c^- \to \overline{n} + X$ •	Challenge: adjust the
 Γ₇₄ e⁺ anything Γ₇₅ p anything Γ₇₆ n anything Γ₇₇ Λ anything Γ₇₈ K⁰_S anything Γ₇₉ 3prongs 	$\begin{array}{cccc} (\ 3.95 \pm \ 0.35) \ \% \\ (50 \ \pm 16 \) \ \% \\ (50 \ \pm 16 \) \ \% \\ (38.2 \ + \ 2.9 \) \ \% \\ (\ 9.9 \ \pm \ 0.7 \) \ \% \\ (\ 24 \ \pm \ 8 \) \ \% \end{array}$	Use DT method. Thousands of candidates from inclusive MC simulation	MC of anti-neutron to be consistent with data.
From PDG, in modes, the preprint p + anything and ~9% for e	the inclusive exision $\sim 32\%$ for and n + anything + + anything.	Measurement of $\Lambda_c^+ \rightarrow X + e^+ \nu_e$ Use DT method.	• Thousands of candidates from inclusive MC simulation

More information: Future Physics Programme of BESIII (Chinese Physics C Vol. 44, No. 4 (2020) 040001)

Summary

- ✓ In 2022, we have new results about $\Lambda_c^+ \rightarrow n\pi^+$ which are measured firstly:
- $\succ \quad \mathcal{B}(\Lambda_c^+ \to n\pi^+) = (6.6 \pm 1.2_{\text{stat}} \pm 0.4_{\text{syst}}) \times 10^{-4} \text{ with a statistical significance of 7.3 } \sigma.$
- $\succ \quad R(\Lambda_c^+ \to n\pi^+/\Lambda_c^+ \to p\pi^0) > 7.2 \text{ at } 90\% \text{ C.L.}$

Phys. Rev. Lett. 128 (2022) 142001

- ✓ We have results about $\Lambda_c^+ \to \Lambda \pi^+$ and $\Lambda_c^+ \to \Sigma^0 \pi^+$ which are consistent with PDG:
- $\succ \quad \mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+) = (1.31 \pm 0.08_{\text{stat}} \pm 0.05_{\text{syst}}) \times 10^{-2}$
- $\succ \quad \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+) = \left(1.22 \pm 0.08_{\text{stat}} \pm 0.07_{\text{syst}}\right) \times 10^{-2}$
- ✓ The results of branching fraction of $\Lambda_c^+ \to n\pi^+$ and the ratio between the branching fractions of $\Lambda_c^+ \to n\pi^+$ and $\Lambda_c^+ \to p\pi^0$ disagree with the most predictions of models.
- ✓ To obtain an improved understanding of Λ_c , it is desirable to preform improved studies of these decays, in particular concerning the $\Lambda_c^+ \rightarrow p\pi^0$ branching fraction in the future using the data from 4.600 to 4.951 GeV.
- ✓ More results of Λ_c will be published very soon.

Thanks for your attention!