

# Hyperon Physics at **HSI**

Liang Yan (On behalf of BESIII Collaboration) Mississippi, 23th-27th May 2022 (online)

# Introduction (I)



### Hyperons are a laboratory for strong interaction and baryon structure

| Decay                                | ${\cal B}~(10^{-5})$ | Events at BESIII     |
|--------------------------------------|----------------------|----------------------|
| $J/\psi \to \Lambda \bar{\Lambda}$   | $189 \pm 9$          | $18.9 \times 10^{6}$ |
| $J/\psi \to \Sigma^+ \bar{\Sigma}^-$ | $150\pm24$           | $15.0 \times 10^{6}$ |
| $J/\psi  ightarrow \Xi ar{\Xi}$      | $97\pm8$             | $9.7	imes10^6$       |
| $\psi(2S) \to \Sigma \bar{\Sigma}$   | $23.2 \pm 1.2$       | $116 \times 10^3$    |
| $\psi(2S) 	o \Omega ar\Omega$        | $5.66\pm0.30$        | $28 	imes 10^3$      |

## Introduction (II)

- Polarization
  - Studies of two-body hyperon weak decays plays an important role in the study of the fundamental symmetries P and CP.
  - The polarization of spin ½ hyperon can be determined in two-body weak decays by  $(1 + \alpha_0 \mathbf{P}_{\Sigma^+} \hat{\mathbf{p}}/4\pi)$

Parity violation S state  
Parity conservation P state 
$$\alpha = \frac{2 \operatorname{Re}(S^*P)}{|S|^2 + |P|^2}, \quad \beta = \frac{2 \operatorname{Im}(S^*P)}{|S|^2 + |P|^2}, \quad \gamma = \frac{|S|^2 - |P|^2}{|S|^2 + |P|^2}$$

 $\alpha$ ,  $\beta$ ,  $\gamma$  could be determined experimentally.

T. D. Lee and C. N. Yang, Phys. Rev. 108,1645 (1957)

# Introduction (II)

- Polarization
  - Studies of two-body hyperon weak decays plays an important role in the study of the fundamental symmetries P and CP.
  - The polarization of spin ½ hyperon can be determined in two-body weak decays by  $(1 + \alpha_0 \mathbf{P}_{\Sigma^+} \hat{\mathbf{p}}/4\pi)$

If the relative phase between hadronic form factor is not zero(Polarized), the decay parameters  $\alpha_0$  and  $\overline{\alpha}_0$  could be simultaneous and direct measured, then test CP symmetry.

T. D. Lee and C. N. Yang, Phys. Rev. 108,1645 (1957)

 $J/\psi \rightarrow \Lambda \overline{\Lambda}$ 

### Nature Phys. 15 (2019) 631



Unpolarized e<sup>+</sup> e<sup>-</sup> beams -> Transverse polarization:

$$P_{y}(\cos \theta_{\Lambda}) = \frac{\sqrt{1 - \alpha_{\psi}^{2}} \sin(\Delta \Phi) \cos \theta_{\Lambda} \sin \theta_{\Lambda}}{1 + \alpha_{\psi} \cos^{2} \theta_{\Lambda}}$$

Formulas  

$$d\sigma \propto \mathcal{W}(\boldsymbol{\xi}) d\boldsymbol{\xi} \qquad \boldsymbol{\xi} = (\theta, \theta_p, \phi_p, \theta_{\bar{p}}, \phi_{\bar{p}})$$
Phys. Lett. B 772, 16 (2017)  

$$\mathcal{W}(\boldsymbol{\xi}) = \mathcal{T}_0(\boldsymbol{\xi}) + \alpha_{\psi} \mathcal{T}_5(\boldsymbol{\xi})$$

$$-\alpha_0 \bar{\alpha}_0 \left( \mathcal{T}_1(\boldsymbol{\xi}) + \sqrt{1 - \alpha_{\psi}^2 \cos(\Delta \Phi) \mathcal{T}_2(\boldsymbol{\xi})} + \alpha_{\psi} \mathcal{T}_6(\boldsymbol{\xi}) \right)$$
SPIN CORRELATIONS  

$$+ \sqrt{1 - \alpha_{\psi}^2 \sin(\Delta \Phi)} (\alpha_0 \mathcal{T}_3(\boldsymbol{\xi}) - \bar{\alpha_0} \mathcal{T}_4(\boldsymbol{\xi}))$$
POLARIZATIONS

 $\begin{aligned} \mathcal{T}_{0}(\boldsymbol{\xi}) =& 1\\ \mathcal{T}_{1}(\boldsymbol{\xi}) =& \sin^{2}\theta \sin\theta_{p} \sin\theta_{\bar{p}} \cos\phi_{p} \cos\phi_{\bar{p}} + \cos^{2}\theta \cos\theta_{p} \cos\theta_{\bar{p}}\\ \mathcal{T}_{2}(\boldsymbol{\xi}) =& \sin\theta \cos\theta (\sin\theta_{p} \cos\theta_{\bar{p}} \cos\phi_{p} + \cos\theta_{p} \sin\theta_{\bar{p}} \cos\phi_{\bar{p}})\\ \mathcal{T}_{3}(\boldsymbol{\xi}) =& \sin\theta \cos\theta \sin\theta_{p} \sin\phi_{p}\\ \mathcal{T}_{4}(\boldsymbol{\xi}) =& \sin\theta \cos\theta \sin\theta_{\bar{p}} \sin\phi_{\bar{p}}\\ \mathcal{T}_{5}(\boldsymbol{\xi}) =& \cos^{2}\theta\\ \mathcal{T}_{6}(\boldsymbol{\xi}) =& \cos\theta_{p} \cos\theta_{\bar{p}} - \sin^{2}\theta \sin\theta_{p} \sin\theta_{\bar{p}} \sin\phi_{p} \sin\phi_{\bar{p}}. \end{aligned}$ 

 $J/\psi \rightarrow \Lambda \overline{\Lambda}$ 

Nature Phys. 15 (2019) 631





$$<\alpha>=\frac{\alpha-\bar{\alpha}}{2}=0.754\pm0.003\pm0.002$$

CLAS:  $\alpha_{\Lambda} = 0.721 \pm 0.006 \pm 0.005$ PRL 123 (2019) 182301

| Parameters                    | This work                    | Previous res       | sults  |
|-------------------------------|------------------------------|--------------------|--------|
| $lpha_\psi$                   | $0.461 \pm 0.006 \pm 0.007$  | $0.469 \pm 0.027$  | BESIII |
| $\Delta \Phi$ (rad)           | $0.740 \pm 0.010 \pm 0.008$  | _                  |        |
| $\alpha_{\Lambda}$            | $0.750 \pm 0.009 \pm 0.004$  | $0.642 \pm 0.013$  | PDG    |
| $\overline{\alpha}_{\Lambda}$ | $-0.758 \pm 0.010 \pm 0.007$ | $-0.71 {\pm} 0.08$ | PDG    |

#### arXiv:2204.11058

- $J/\psi \rightarrow \Lambda \overline{\Lambda}$
- 10 Billion J/psi events are used to update the results.
- The decay parameter a is consistent with previous measurements.
- Acp value is improved with both statistical and systematical uncertainties.

| Par.                         | This work                       | Previous results [8]         |  |
|------------------------------|---------------------------------|------------------------------|--|
| $\overline{\alpha_{J/\psi}}$ | $0.4748 \pm 0.0022 \pm 0.0024$  | $0.461 \pm 0.006 \pm 0.007$  |  |
| $\Delta \Phi$                | $0.7521 \pm 0.0042 \pm 0.0080$  | $0.740 \pm 0.010 \pm 0.009$  |  |
| lpha                         | $0.7519 \pm 0.0036 \pm 0.0019$  | $0.750 \pm 0.009 \pm 0.004$  |  |
| $lpha_+$                     | $-0.7559 \pm 0.0036 \pm 0.0029$ | $-0.758 \pm 0.010 \pm 0.007$ |  |
| $A_{CP}$                     | $-0.0025 \pm 0.0046 \pm 0.0011$ | $0.006 \pm 0.012 \pm 0.007$  |  |
| $lpha_{ m avg}$              | $0.7542 \pm 0.0010 \pm 0.0020$  | -                            |  |
|                              |                                 |                              |  |



J/ $\psi$  and  $\psi$ (3686) -> $\Sigma^+ \Sigma^-$ 

Data --- Phase space 0.004 Fitting  $M(\cos\theta)$ 0.002 0 -0.002 -0.004 -0.006 -0.8 -0.6 -0.4 -0.2 0.2 0.6 0.8 -1 0 0.4  $\cos(\theta)$  $-\alpha_{\psi}^2 \alpha_0 \sin \Delta \Phi \cos \theta \sin \theta$  $\frac{dM}{d\cos\theta} \sim$ 

| Parameter              | Measured value               |
|------------------------|------------------------------|
| $\alpha_{J/\psi}$      | $-0.508 \pm 0.006 \pm 0.004$ |
| $\Delta \Phi_{J/\psi}$ | $-0.270 \pm 0.012 \pm 0.009$ |
| $lpha_{\psi'}$         | $0.682 \pm 0.03 \pm 0.011$   |
| $\Delta \Phi_{w'}$     | $0.379 \pm 0.07 \pm 0.014$   |
| $\alpha_0$             | $-0.998 \pm 0.037 \pm 0.009$ |
| $\bar{lpha}_0$         | $0.990 \pm 0.037 \pm 0.011$  |

Phys. Rev. Lett. 125, 052004 (2020)



The points with error bars are the data, and the solid-line histogram is the global fit result. The dotted histogram is phase space model.

 $\begin{array}{ll} \mbox{CP asymmetry} & -0.004 \pm 0.037 \pm 0.010 \\ \mbox{average decay asymmetry} -0.994 \pm 0.004 \pm 0.002 \end{array}$ 

 $J/\psi \rightarrow \Xi^{-} \overline{\Xi}^{+}$ 

θ

 $\alpha_Y^2 + \beta_Y^2 + \gamma_Y^2 = 1$ 

 $\beta_Y = \sqrt{1 - \alpha_Y^2} \sin \phi_Y, \quad \gamma_Y = \sqrt{1 - \alpha_Y^2} \cos \phi_Y$ 

d

 $(\mathbf{S})$ 

 $\Xi^-$ 

**(S)** 

 $\pi^{-}$ 

d

Ū



arXiv:2105.11155

$$W = \sum_{\mu,\overline{\nu}=0}^{3} C_{\mu\overline{\nu}} \sum_{\mu',\overline{\nu}'=0}^{3} a_{\mu,\mu'}^{\Xi} a_{\overline{\nu},\overline{\nu}}^{\overline{\Xi}}, a_{\mu',0}^{\Lambda} a_{\overline{\nu}',0}^{\overline{\Lambda}}$$

 $d\Gamma \propto W(\xi, \omega), \xi$ : 9 kin. variables 8 parameters:

 $\boldsymbol{\omega} = ( \substack{\alpha_{\Psi}, \Delta \Phi, \alpha_{\Xi}, \phi_{\Xi}, \alpha_{\Lambda}, \bar{\alpha}_{\Xi}, \bar{\phi}_{\Xi}, \bar{\alpha}_{\Lambda} }_{\text{Decay}} )$ 

There are 73k events (190 background), the 8 parameters are estimated with unbinned MLL fit!

# $J/\psi \rightarrow \Xi^- \overline{\Xi}^+$

### arXiv:2105.11155

| Parameter                          | This work                                | Previous result               |       |                            |
|------------------------------------|------------------------------------------|-------------------------------|-------|----------------------------|
| $lpha_{\psi}$                      | $0.586 \pm 0.012 \pm 0.010$              | $0.58 \pm 0.04 \pm 0.08$      | [39]  |                            |
| $\Delta\Phi$                       | $1.213 \pm 0.046 \pm 0.016$ rad          | -                             |       |                            |
| $\alpha_{\Xi}$                     | $-0.376 \pm 0.007 \pm 0.003$             | $-0.401 \pm 0.010$            | [21]  |                            |
| φΞ                                 | $0.011 \pm 0.019 \pm 0.009~rad$          | $-0.037\pm0.014$ rad          | [21]  |                            |
| $\overline{\alpha}_{\Xi}$          | $0.371 \pm 0.007 \pm 0.002$              | -                             |       |                            |
| $\overline{oldsymbol{\phi}}_{\Xi}$ | $-0.021\pm 0.019\pm 0.007~{\rm rad}$     | -                             |       |                            |
| $lpha_\Lambda$                     | $0.757 \pm 0.011 \pm 0.008$              | $0.750 \pm 0.009 \pm 0.004$   | [14]  | Independent measurement of |
| $\overline{lpha}_{\Lambda}$        | $-0.763 \pm 0.011 \pm 0.007$             | $-0.758 \pm 0.010 \pm 0.007$  | [14]  | $lpha_\Lambda$             |
| $\xi_P - \xi_S$                    | $(1.2\pm3.4\pm0.8)	imes10^{-2}~{ m rad}$ | _                             |       | First measurement of weak  |
| $\delta_P - \delta_S$              | $(-4.0\pm3.3\pm1.7)	imes10^{-2}$ rad     | $(10.2\pm3.9)	imes10^{-2}$ ra | d[17] | phase difference:          |
| $A_{\rm CP}^{\Xi}$                 | $(6.0\pm13.4\pm5.6)\times10^{-3}$        | _                             |       | 3 CP test                  |
| $\Delta \phi_{\mathrm{CP}}^{\Xi}$  | $(-4.8\pm13.7\pm2.9)\times10^{-3}$ rad   | -                             |       | 5 CI (CS)                  |
| $A^{\Lambda}_{\mathrm{CP}}$        | $(-3.7\pm11.7\pm9.0)\times10^{-3}$       | $(-6\pm12\pm7)\times10^{-3}$  | [14]  |                            |
| $\langle \phi_{\Xi} \rangle$       | $0.016 \pm 0.014 \pm 0.007$ rad          |                               |       |                            |

 $J/\psi \rightarrow \Xi^- \overline{\Xi}^+$ 

arXiv:2105.11155



Polarization and spin correlations in the J/ $\psi$  ->  $\Xi^- \Xi^+$ 

# $\psi(3686) \rightarrow \Omega^{-} \Omega^{+}$

Phys. Rev. Lett. 126, 092002 (2021)

- The spin of  $\Omega^-$  J= 3/2 has never unambiguously confirmed by experiments directly.
- Polarization of the  $\Omega^-$  can be studied with the  $\Omega^-$  weak decay chains, and decay parameters could be measured.
- Helicity amplitude method is used.



 $\psi(3686) - \Omega^{-} \Omega^{+}$ 



Phys. Rev. Lett. 126, 092002 (2021)

## 3/2 is preferred over 1/2 with significance more than 14 $\!\sigma$

Not only observe vector polarization(r1), but also quadrupole (r6, r7, r8) and octupole(r10, r11) polarizations

Br( $\psi$ (3686)-> $\Omega^+ \Omega^-$ ) = (5.85 ± 0.12 ± 0.25) X 10<sup>-5</sup>  $\alpha$  = 0.24 ± 0.10



- Hyperons are an important probe to study QCD, fundamental symmetries, and form factors.
- 10 Billion J/ $\psi$  data and 2.7 Billion  $\psi$ (3686) data collected will bring more exciting results.

• More hyperons study results come soon.



## **BACK UP**

## BEPCII storage rings: a $\tau$ -charm factory



## **BESIII** detectors



- Main Drift Chamber (MDC)
  - σ(p)/p = 0.5%
  - $\sigma_{dE/dX} = 5.0\%$

- Time-of-flight (TOF)
  - σ(t) = 68ps (barrel)
  - σ(t) = 65ps (endcap)
- Electro Magnetic Calorimeter (EMC)
  - σ(E)/E = 2.5%
  - $\sigma_{z,\phi}(E) = 0.5 0.7 \text{ cm}$

RPC MUON Detectorσ(xy) < 2 cm</li>