Neutrino oscillation experiments: Present and future

Ryan Patterson Caltech

Conference on Flavor Physics and CP Violation May 25, 2022

Neutrino oscillations

$$P(
u_{lpha}
ightarrow
u_{eta}) \sim \sin^2\left(\Delta m_{ij}^2 rac{L}{4E}
ight)$$
 meutrino energy

A given source has characteristic E (and ν_{α}).

Suggests optimal *L* for maximizing oscillations.

(simplified picture \Rightarrow exceptions)

solar, atmospheric, reactor, and accelerator v sources

Experimental overview

3-flavor oscillations

Parameters best constrained by various sources

Solar (MSW)
Reactor (~60 km)
$$\Delta m_{21}^{2} \quad \theta_{12}$$
Reactor (~2 km) $\rightarrow |\Delta m_{32}^{2}| \quad \theta_{13}$

Atmospheric
$$\rightarrow |\Delta m_{32}^2| \quad \theta_{13}$$

$$|\Delta m_{32}^2| \quad \theta_{23} \quad [\nu MO]$$

Accelerator (LBL)
$$\rightarrow |\Delta m_{32}^2| \quad \theta_{23} \quad [\nu \text{MO}]$$

 $\delta_{CP} \quad [\theta_{13}]$

 $\rightarrow \sin^2 \theta_{ii}$ and $|\Delta m_{ii}^2|$ all measured to ~few percent

Next "structural" questions

Leptonic *CP* violation?

$$\sin \delta_{CP} \neq 0$$

Maximal mixing?

$$\theta_{23} = 45^{\circ}$$
 $(|U_{\mu 3}| = |U_{\tau 3}|)$

Experimental overview

3-flavor oscillations

Parameters best constrained by various sources

Solar (MSW) Reactor (
$$\sim 60 \text{ km}$$
) $\Delta m_{21}^2 = \theta_{12}$

Reactor (~2 km)
$$\rightarrow |\Delta m_{32}^2|$$
 θ_{13}

Atmospheric
$$\rightarrow |\Delta m_{32}^2| \quad \theta_{23} \quad [\nu MO]$$

Accelerator (LBL)
$$\rightarrow |\Delta m_{32}^2| \quad \theta_{23} \quad [\nu \text{MO}]$$

 $\delta_{CP} \quad [\theta_{13}]$

 $\rightarrow \sin^2 \theta_{ii}$ and $|\Delta m_{ij}^2|$ all measured to ~few percent

Needs:

- Address structural unknowns (e.g., at right)
- Testing mass/flavor models ↔ improved precision
- Direct unitarity tests (currently rather poor)

Next "structural" questions

Leptonic *CP* violation?

$$\sin \delta_{CP} \neq 0$$

Maximal mixing?

$$\theta_{23} = 45^{\circ}$$
 $(|U_{\mu 3}| = |U_{\tau 3}|)$

(And outside the scope of oscillation experiments: m_{ν} ? Majorana or Dirac?)

Experimental overview

3-flavor oscillations

Parameters best constrained by various sources

$$\left.\begin{array}{c}
\text{Solar (MSW)} \\
\text{Reactor (\sim60 km)}
\end{array}\right\} \quad \Delta m_{21}^2 \qquad \theta_{12}$$

Reactor (~2 km) $\rightarrow |\Delta m_{32}^2| \theta_{13}$

Atmospheric $\rightarrow |\Delta m_{32}^2| \quad \theta_{23} \quad [\nu MO]$

Accelerator (LBL) $\rightarrow |\Delta m_{32}^2|$ θ_{23} ν MO δ_{CP} $[\theta_{13}]$

These classes of experiment expected to have significant new oscillation results in the near term

Will spend some time here before looking to the future...

Next "structural" questions

Leptonic *CP* violation?

$$\sin \delta_{CP} \neq 0$$

Maximal mixing?

$$\theta_{23} = 45^{\circ}$$

($|U_{\mu 3}| = |U_{\tau 3}|$)

Accelerator-based long-baseline experiments

 $NOvA, T2K \rightarrow DUNE, T2HK/Hyper-K$ (current) (next-gen)

Sketch

★ NOvA: $E \sim 2$ GeV

T2K: $E \sim 0.6 \text{ GeV}$

neutrino source

near detector hundreds of kilometers

far detector

v_{μ} disappearance

$$P(\nu_{\mu} \to \nu_{e,\tau}) \approx \sin^2 2\theta_{23} \sin^2 \left(\Delta m_{32}^2 \frac{L}{4E}\right)$$

experimental data are **consistent with unity** (*i.e.*, maximal mixing)

u_{μ} events in Far Detector

(NOvA-like example)

Sketch

★ NOvA: $E \sim 2$ GeV

T2K: $E \sim 0.6 \text{ GeV}$

neutrino source

near detector hundreds of kilometers

far detector

ν_{μ} disappearance

$$P(\nu_{\mu} \to \nu_{e,\tau}) \approx \sin^2 2\theta_{23} \sin^2 \left(\Delta m_{32}^2 \frac{L}{4E}\right)$$

experimental data are **consistent with unity** (*i.e.*, maximal mixing)

ν_e appearance

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \dots$$

...a much more involved function of the parameters of interest.

Significant connections to θ_{13} , θ_{23} , δ_{CP} , and the **neutrino mass ordering***

ν_{μ} events in Far Detector

(NOvA-like example)

^{*}due to the neutrinos passing through matter

NOvA detectors

- Liquid scintillator cells
- Fiber-to-APD readout
- FD and ND functionally identical by design

→ Differ only in size (essentially)

Far detector: 14 kton, 344k cells

Near detector: 0.3 kton, 20k cells

T2K (far) detector

- The long-running **Super-Kamiokande** detector
- 50-kton water Cherenkov detector
- 11,000 20" PMTs on inner surface (40% coverage)

- *e*/*μ* **discrimination** from ring characteristics
- $E_{\nu} \sim 0.6 \text{ GeV}$
 - \Rightarrow relatively simple final states (e.g., $\mu + p$ or $\mu + p + \pi$)
 - ⇒ protons below Cherenkov threshold
- E_{ν} from reconstructed lepton momentum (and kinematics)

NOvA FD data

At right: ν_{μ} CC candidate events ("disappearance")

Below: ν_e CC candidate events ("appearance")

Not shown, but important pieces of oscillation fit:

- $\overline{\nu}_{\mu}$ and $\overline{\nu}_{e}$ samples!
- Breakdown of $\nu_{\mu}/\overline{\nu}_{\mu}$ samples by hadronic energy fraction

Ryan Patterson 11 FPCP 2022

NOvA FD data

At right: ν_{μ} CC candidate events ("disappearance")

Below: ν_{ρ} CC candidate events ("appearance")

Not shown, but important pieces of oscillation fit:

- $\overline{\nu}_u$ and $\overline{\nu}_e$ samples!
- Breakdown of $\nu_{\mu}/\overline{\nu}_{\mu}$ samples by hadronic energy fraction

12 FPCP 2022 Ryan Patterson

T2K FD data

At right: ν_{μ} CC quasi-elastic candidate events

Below: v_e CC quasi-elastic candidate events

Not shown, but important pieces of oscillation fit:

- $\overline{\nu}_{\mu}$ and $\overline{\nu}_{e}$ samples!
- Additional "1e with Michel" sample $(e^- + \pi^+)$ final state)

 Δm_{32}^2 and θ_{23}

Will come back to the atmospheric ν experiments.

Daya Bay reactor experiment also impactful in $|\Delta m_{32}^2|$.

- $|\Delta m_{32}^2|$ precision: 1.1% on global average given a mass ordering
- Still no evidence of deviation from **maximal mixing** ($\sin^2 \theta_{23} = 0.5$)

LBL ν_e appearance

 $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ depend on:

Complementarity between T2K and NOvA

T2K: minimal ν MO sensitivity

NOvA: good νMO sensitivity

Inter-collaboration joint fits underway:

NOvA + T2K and also **T2K + SuperK***

Results expected later this year

Current best fits land in the **normal ordering**, but only at **polar opposite** δ_{CP} **values**

In slightly less favored inverted ordering, good agreement in δ_{CP}

>2.5 \times increase in LBL exposures anticipated (vs. currently analyzed) through c. 2027

* SuperK atmospheric ν data: 1.3 σ preference for normal ordering

Oscillations with atmospheric neutrinos

Atmospheric v oscillations

• ν from cosmic ray interactions in atmosphere Relevant energies: $\sim 1 - 1000 \text{ GeV}$

- **Broad spectrum**, mixture of initial flavors
- Baseline varies with ν incident angle $L \sim 10^1 \text{ to } 10^4 \text{ km}$
- (above τ prod. • $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\nu_{\mu} \rightarrow \nu_{e}$ and $\nu_{\mu} \rightarrow \nu_{\tau}$ threshold)

At left:

Regular oscillation pattern

plus

Localized distortion due to resonant matter effects

 \Rightarrow v mass ordering

 E_{ν} , θ_{Z} smearing is <u>significant</u> (not shown in this cartoon!)

FPCP 2022

Super-K detector described already

- *Underway:* Gd doping \rightarrow improved neutron tagging $(\nu/\overline{\nu}$ separation)

IceCube / DeepCore

Ryan Patterson 18 FPCP 2022

DeepCore analysis improvements (c. 2022)

- → >200k neutrinos, all flavors. Competitive oscillation sensitivity w/ LBL expts.
- $\rightarrow \nu_{\tau}$ appearance: 10k events, expecting 11% precision on normalization (PMNS unitarity)

A bit later on the timeline...

IceCube Upgrade

- → 2 Mton sub-array in 10 Mton DeepCore (and other improvements)
- → **Drop threshold** to 1 GeV

ORCA/KM3NeT

- → 7 Mton PMT array in Mediterranean
- \rightarrow Optimized for $\sim 1 100 \text{ GeV}$
- → Currently: Preliminary operations with 5% deployment

Competitive ν mass ordering reach ultimately (few to several σ)

Synthesizing \sim 5 yr projections (so, c. 2027)

Precision on θ_{12} , θ_{13} , Δm_{21}^2

 \rightarrow Minimal changes until next-gen experiments (e.g., JUNO)

Precision on θ_{23} , $|\Delta m_{32}^2|$

→ Some gains to come in current generation. Large gains in next-gen.

3-flavor "structural" questions

 \rightarrow Reach heavily depends on (*still unknown!*) actual answers

Ryan Patterson 20 FPCP 2022

Synthesizing \sim 5 yr projections (so, c. 2027)

Precision on θ_{12} , θ_{13} , Δm_{21}^2

(A qualitative sketch.
Don't try to read precise
numbers off this diagram!)

(A qualitative sketch.
unclear
(<1\sigma)

unclear hints evidence discovery $(<1\sigma)$ $(\sim2\sigma)$ $(\sim3\sigma)$ $(>4-5\sigma)$

Ryan Patterson 21 FPCP 2022

The next steps...

Next-generation LBL experiments

Hyper-K / T2HK

- 187-kt fid. volume water Cherenkov detector
- 1.3 MW off-axis beam from J-PARC
- 295 km oscillation baseline

DUNE

- >40-kt fiducial volume liquid argon TPC
- 1.2 2.4 MW broad-band beam from FNAL
- 1300 km oscillation baseline

looking at both...

5σ CPv reach for >50% of parameter space. Precision PMNS measurements.

Civil construction underway. **First physics data toward end of this decade. Highly complementary** in detector design, systematics mitigation, and broader science program

Ryan Patterson 24 FPCP 2022

JUNO

- 20 kton open-volume liquid scintillator detector
- Oscillations at $L \approx 50$ km with reactor $\overline{\nu}_e$ (Plus atmospheric, solar, geo, supernova ν)
- Designed for **highly efficient light collection** strong requirements on energy resolution (3%) and linearity/scale uncertainties (<1%)

- Sub-percent measurements of θ_{12} , $|\Delta m_{ij}^2|$
- Novel approach to **mass ordering**:
 - \rightarrow Direct spectral measurement of all Δm_{ij}^2 -driven oscillation contributions
- Construction well underway. Start of operations planned for 2023
 - \rightarrow 3 σ vMO by end of decade

Ryan Patterson 25 FPCP 2022

Closing

- Several experiments with a range of time scales are poised to provide the next answers in the neutrino sector.
- In this short talk, I have **only scratched the surface** of the broad programs of the experiments discussed here.

(e.g., measurements related to astrophysics, baryon number violation, sterile neutrinos, dark matter, and other BSM physics)

