FPCP 2022 — Oxford, Mississippi, USA — 05/25/22

MAURO VALLI

C.N. Yang Institute for Theoretical Physics

MANY SPECIAL THANKS TO MARCELLA BONA!

Historically, it lead to "New Physics" (NP)!

E.g., prediction of charm quark:

It leads to a Standard Model (SM) puzzle ...

... and Beyond!

: Testing the SM

0

Flavor violation in the (mass basis of) SM only from charged weak-current couplings <—> matrix V_{CKM} —> FCNCs @ one loop (& GIM suppressed)

$$V_{\rm CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\bar{\rho} - i\bar{\eta}) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Top-quark dominates short-distant physics in FCNCs, CPV @ stake only if all 3 generations are involved --> CKM 3rd row very relevant for phenomenology

SUSY 2013 Triese, $\tilde{\eta}$) apex of $V_{ub} = V_{cb} + V_{cb} + V_{cd} + V_{tb} + V_{tb} = Q$

M.Bona, M. Ciuchini, D. Derkach, F. Ferrari, E. Franco, V. Lubicz, G. Martinelli, M. Pierini, L. Silvestrini, C. Tarantino, V. Vagnoni, M. Valli, and L.Vittorio

- EXP - TH

$$\mathcal{P}\left(\bar{\rho}, \bar{\eta}, \vec{p} \mid \vec{\mathcal{O}}\right) \sim \mathcal{P}\left(\vec{\mathcal{O}} \mid \bar{\rho}, \bar{\eta}, \vec{p}\right) \times \mathcal{P}_0(\bar{\rho}, \bar{\eta}, \vec{p})$$

posterior \sim likelihood \times prior

see, e.g., arXiv:hep-ph/0012308

Observables <---> constraints in the fit

$$\bullet \quad \vec{p} = \{f_K$$

 $\{B, B, B_{K,B}, \cdots\}$

Parameters we can marginalize over

(
$$ar{
ho},ar{\eta}$$
) <---> CKM pair we wish to infer

@ https://xkcd.com/1132

Novelties I

*** new UTfit 2D skeptical combination of IVcb I and IVub I*** à la D'Agostini, similar to PDG

Novelties II

*** new UT fit average of α , latest γ from HFLAV ***

Last, but not least:

- Updated lattice inputs from FLAG $N_f = 2+1, 2+1+1$ (arXiv:2111.09849)
- Skeptical combination for V_{ud} , i.e. $|V_{ud}| = 0.97433 \pm 0.00019$

SM UTA as of '22!

few % determination = decades of tremendous EXP + TH progress!

UTA : angles only

*** i.e., only hadronic B decay modes shaping the UT ***

UTA : sides & EK

*** i.e., meson anti-meson mixing + tree-level semileptonic ***

Universal Unitarity Triangle

*** i.e., only observables Minimal Flavor Violation (MFV) friendly ***

arXiv:hep-ph/0007085, arXiv:hep-ph/0207036

UTA : tree-level only

Compatibility plot graphical pull of obs

Tensions I

< 1.5 σ tension in the fit

x <---> inclusive | V_{ub} | x 10³ = 4.32 ± 0.29 * <---> exclusive | V_{ub} | x 10³ = 3.74 ± 0.17

Tensions II

~ 2σ tension in the fit

x <---> inclusive $|V_{cb}| \times |0^3 = 42.16 \pm 0.50$ * <---> exclusive $|V_{cb}| \times |0^3 = 39.44 \pm 0.63$

Tensions III

~ 4σ tension in the fit

UTA : Inclusive VS Exclusive

Inclusive

Exclusive

SM UTA as of '22

Observables	Measurement	Prediction	Pull (#ơ)
sin2β	0.688 ± 0.020	0.740 ± 0.030	~ 1.4
Y	65.8 ± 3.4	64.8 ± 1.4	< 1
α	95.0 ± 4.7	92.5 ± 1.6	< 1
ε _κ · 10³	2.228 ± 0.001	2.07 ± 0.15	< 1
V _{cb} · 10 ³	41.1 ± 1.3	42.6 ± 0.5	< 1
V _{cb} • 10 ³ (incl)	42.16 0.50		< 1
$ V_{cb} \cdot 10^3$ (excl)	39.44 0.63		~ 3.9
V _{ub} • 10 ³	3.89 ± 0.25	3.70 ± 0.10	< 1
V _{ub} • 10 ³ (incl)	4.32 ± 0.29	-	~ 2.0
$ V_{ub} \cdot 10^3$ (excl)	3.74 ± 0.17	-	< 1
$BR(B\to \tau v)[10^{-4}]$	1.09 ± 0.24	0.88 ± 0.05	< 1
A _{SL} ^d • 10 ³	-2.1 ± 1.7	-0.33 ± 0.03	< 1
A _{SL} ^s · 10 ³	-0.6 ± 2.8	0.014 ± 0.001	< 1

NP Analysis: Wiki How

Most generic NP effects in $|\Delta F| = 2$ transitions:

Fit simultaneously CKM & NP --> bound on NP scale 6 new parameters

UTA x New Physics

NP UTA

$$ar{
ho} = 0.178 \pm 0.027 \sim 15\%$$

 $ar{\eta} = 0.384 \pm 0.029 \sim 8\%$

$$\bar{a} = 0.161 \pm 0.009 \sim 6^{\circ}$$

$$\bar{\eta} = 0.344 \pm 0.009 \approx 0.007$$

$$\bar{\eta} = 0.344 \pm 0.010 \sim 3\%$$

SM UTA

NP Analysis: Results I

NP Analysis: Results III

 $|\Delta F| = 2$ Weak EFT SM/MFV $O_1^{q_i q_j} = \bar{q}_{jL}^{\alpha} \gamma_{\mu} q_{iL}^{\alpha} \, \bar{q}_{jL}^{\beta} \gamma^{\mu} q_{iL}^{\beta}$ $O_2^{q_i q_j} = \bar{q}_{iR}^{\alpha} q_{iL}^{\alpha} \,\bar{q}_{jR}^{\beta} q_{iL}^{\beta}$ $O_3^{q_i q_j} = \bar{q}_{iR}^{\alpha} q_{iL}^{\beta} \,\bar{q}_{jR}^{\beta} q_{iL}^{\alpha}$ $O_4^{q_i q_j} = \bar{q}_{jR}^{\alpha} q_{iL}^{\alpha} \bar{q}_{jL}^{\beta} q_{iR}^{\beta}$ $O_5^{q_i q_j} = \bar{q}_{jR}^{\alpha} q_{iL}^{\beta} \bar{q}_{jL}^{\beta} q_{iR}^{\alpha}$ + chirally flipped $\widetilde{O}_{1,2,3}^{q_i q_j}$ see, e.g. arXiv:/0707.0636

Generic NP = no SM protection, namely : $C(\Lambda) = C/\Lambda^2$

NP Analysis: Results IV

 $|\Delta F| = 2$ Weak EFT SM/MFV $O_1^{q_i q_j} = \bar{q}_{jL}^{\alpha} \gamma_{\mu} q_{iL}^{\alpha} \, \bar{q}_{jL}^{\beta} \gamma^{\mu} q_{iL}^{\beta}$ $O_2^{q_i q_j} = \bar{q}_{iR}^{\alpha} q_{iL}^{\alpha} \,\bar{q}_{jR}^{\beta} q_{iL}^{\beta}$ $O_3^{q_i q_j} = \bar{q}_{iR}^{\alpha} q_{iL}^{\beta} \,\bar{q}_{iR}^{\beta} q_{iL}^{\alpha}$ $O_4^{q_i q_j} = \bar{q}_{jR}^{\alpha} q_{iL}^{\alpha} \bar{q}_{jL}^{\beta} q_{iR}^{\beta}$ $O_5^{q_i q_j} = \bar{q}_{jR}^{\alpha} q_{iL}^{\beta} \bar{q}_{jL}^{\beta} q_{iR}^{\alpha}$ + chirally flipped $\widetilde{O}_{1,2,3}^{q_i q_j}$ see, e.g. arXiv:/0707.0636

Next-to-MFV = SM-like protection, but O(1) phases

$|\Delta F| = 2$ Beyond the Weak EFT

$$\frac{\text{SU(2)}_{\text{L}} \times \text{U(1)}_{\text{Y}}}{\text{gauge invariance}} \left(\mathcal{L}_{\text{SMEFT}} \right) = \mathcal{L}_{\text{SM}} + \sum_{i,d>4} \frac{C_i \mathcal{O}_i^{(d)}}{\Lambda_{\text{NP}}^{d-4}}$$

SMEFT RGE

$O^{HQ^{(1[3])}}_{jk}$	O^{LedQ}_{jjkl}	O^{LeQu}_{jjkl}	$O^{ud_{jklm}^{(1[8])}}$	$O_{jklm}^{QuQd^{(1[8])}}$
$\left(H^{\dagger}i \stackrel{\leftrightarrow}{D}{}_{\mu}^{[A]}H\right)\left(\bar{Q}_{j}\gamma^{\mu}\left[\tau^{A}\right]Q_{k}\right)$	$\left(\bar{L}_{j}e_{j}\right)\left(\bar{d}_{k}Q_{l}\right)$	$\left(\bar{L}_{j}e_{j}\right)i\tau^{2}\left(\bar{Q}_{k}u_{l}\right)$	$\left(\bar{u}_j\gamma_{\mu}[T^a]u_k\right)\left(\bar{d}_l\gamma^{\mu}[T^a]d_m\right)$	$\left(\bar{Q}_j\gamma_\mu[T^a]u_k\right)i\tau^2\left(\bar{Q}_l\gamma^\mu[T^a]d_m\right)$
$O_{jklm}^{QQ^{(1[3])}}$	O^{uu}_{jklm}	O^{dd}_{jklm}	$O_{jklm}^{Qd^{(1[8])}}$	$O_{jklm}^{Qu^{(1[8])}}$
$\left(\bar{Q}_j\gamma_{\mu}[\tau^A]Q_k\right)\left(\bar{Q}_l\gamma^{\mu}[\tau^A]Q_m\right)$	$\left \left(\bar{u}_j \gamma_\mu u_k \right) \left(\bar{u}_l \gamma^\mu u_m \right) \right.$	$\left(\bar{d}_j\gamma_{\mu}d_k\right)\left(\bar{d}_l\gamma^{\mu}d_m\right)$	$\left(\bar{Q}_j\gamma_{\mu}[T^a]Q_k\right)\left(\bar{d}_l\gamma^{\mu}[T^a]d_m\right)$	$\left(\bar{Q}_j\gamma_{\mu}[T^a]Q_k\right)\left(\bar{u}_l\gamma^{\mu}[T^a]u_m\right)$

poorly constrained

FLAVOR MISALIGNMENT

For more details:

Model-independent bounds on the standard model effective theory from flavour physics

Luca Silvestrini^{a,b}, Mauro Valli^{c,*}

Physics Letters B 799 (2019) 135062

SMEFT atlas of $\Delta F = 2$ transitions

Jason Aebischer 🖂, Christoph Bobeth, Andrzej J. Buras & Jacky Kumar

Journal of High Energy Physics 2020, Article number: 187 (2020)

SM UTA: Towards % precision: Overall consistency amazing! \bigcirc -> current pull from | Vcb | @ 4σ ($B_{(g)}$ -> $D_{(g)}^{(*)}$ | v) but see recent work by G.Martinelli, S.Simula, L.Vittorio NP UTA: 2109.15248, 2204.05925 Λ_{NP} <u>C</u> (ψψ)2 Λ²_{NP} UTA = PRECISION **NATURAL COLLIDER** \mathbf{O} credit to R.Rattazzi @ GGI '21 **"CLEVER", NOT SIMPLE**

BACKUP

M.Bona @LHCP '22

 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state

 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state

 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state

 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state

 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Provide the second state
 Image: Providet the second state
 Image: Prov

new-physics-specific constraints

$$A_{SL}^{s} \equiv \frac{\langle a \rangle}{\Gamma(\bar{B}_{s} \to \ell^{+}X) + \Gamma(B_{s} \to \ell^{-}X)} = \operatorname{Im}\left(\frac{12}{A_{s}^{\text{full}}}\right)$$

semileptonic asymmetries in B⁰ and B_s: sensitive to NP effects in both size

and phase. Taken from the latest HFLAV.

same-side dilepton charge asymmetry:

admixture of B_s and B_d so sensitive to NP effects in both.

$$A_{\rm SL}^{\mu\mu} \times 10^3 = -7.9 \pm 2.0$$

lifetime τ^{FS} in flavour-specific final states:

average lifetime is a function to the width and the width difference

 $\tau^{FS}(B_s) = 1.527 \pm 0.011 \text{ ps}$ HFLAV

$\phi_s = 2\beta_s vs \Delta\Gamma_s from B_s \rightarrow J/\psi\phi$ angular analysis as a function of proper time and b-tagging

Marcella Bona

 $\phi_{s} = -0.049 \pm 0.019$ rad

Cleo, BaBar, Belle, D0 and LHCb

 $\left(\Gamma_{12}^{s} \right)$

D0 arXiv:1106.6308

 $\Gamma(\bar{B}_s \to \ell^+ X) - \Gamma(B_s \to \ell^- X)$

$$A_{\rm SL}^{\mu\mu} = \frac{f_d \chi_{d0} A_{\rm SL}^d + f_s \chi_{s0} A_{\rm SL}^s}{f_d \chi_{d0} + f_s \chi_{s0}}$$

M.Bona @LHCP '22

IN A A A INITARITY Triangle update

M.Bona @LHCP'22

The ratio of NP/SM amplitudes is: < 26% @68% prob. (37% @95%) in B_d mixing < 18% @68% prob. (25% @95%) in B_s mixing

