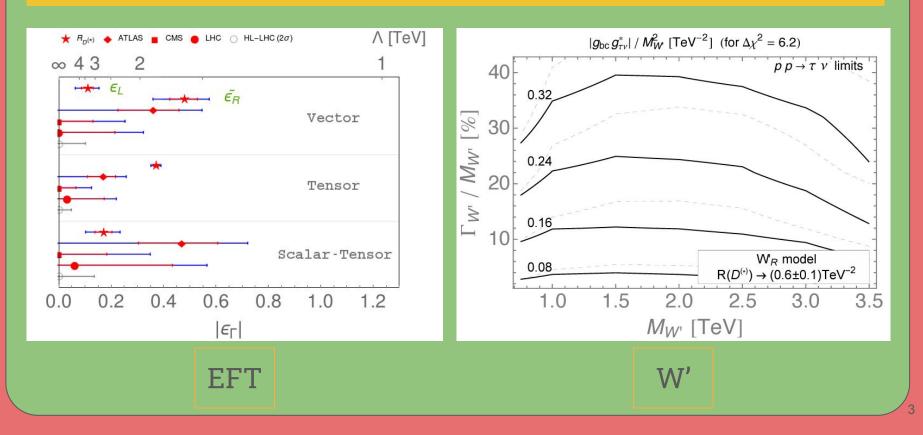
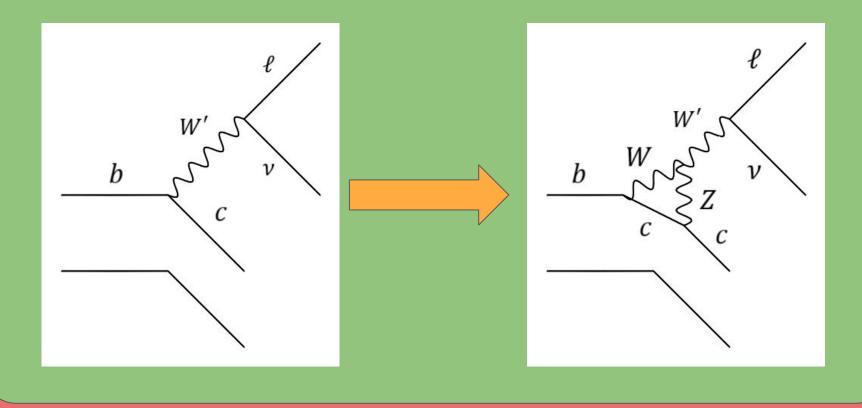
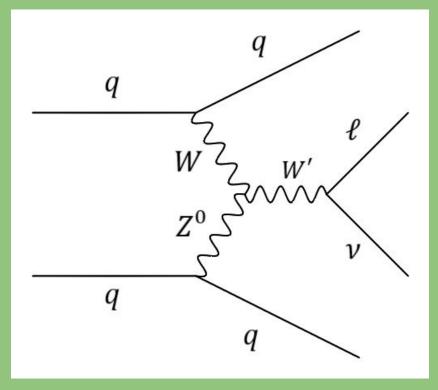

Quarkofobic W' for LHC searches

Alfredo Gurrola - José Ruiz




An initial motivation coming from R(D*)


Competitive and complimentary

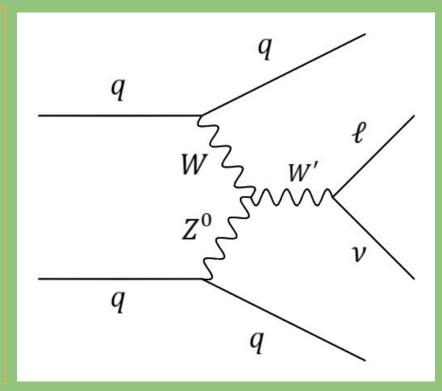
Quarkofobic W'

Vector Boson Fusion W' production at the LHC

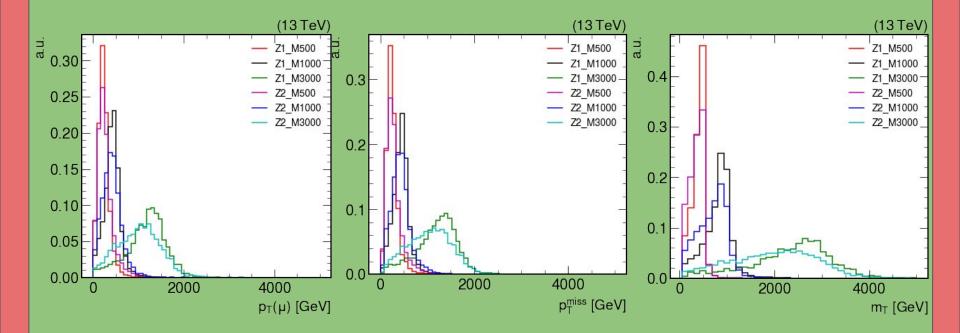
A simplified model implementation

- 1. Simplified: No complete model, only inclusion of vertices of interest.
- 2. Mimicking of SM TGC.
- 3. Minimal couplings: Only including what necessary to get processes.

$$\mathcal{L}_{VWW'}^{1} = g_{1}^{V} V^{\mu} (W_{\mu\nu}^{-} W'^{+\nu} - W_{\mu\nu}^{+} W'^{-\nu} + W'^{-}_{\mu\nu} W^{+\nu} - W'^{+}_{\mu\nu} W^{-\nu})$$

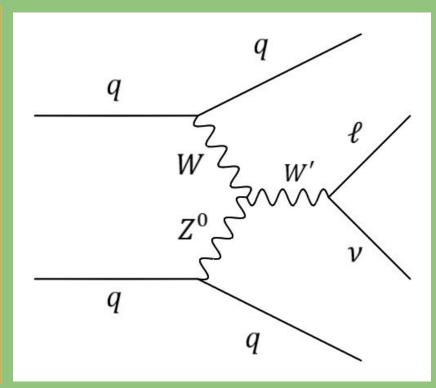

$$\mathcal{L}^2_{VWW'} = g_2^V (W^+_\mu W'^-_\nu V^{\mu\nu} + W'^+_\mu W^-_\nu V^{\mu\nu})$$

 $V_{\mu\nu} = \partial_{\mu}V_{\nu} - \partial_{\nu}V_{\mu}$ and V = Z or γ


$$\mathcal{L}_l = \sum_l ar{
u}_l \gamma_\mu (g_l^R(1+\gamma^5)+g_l^L(1-\gamma^5)) W'^\mu l$$

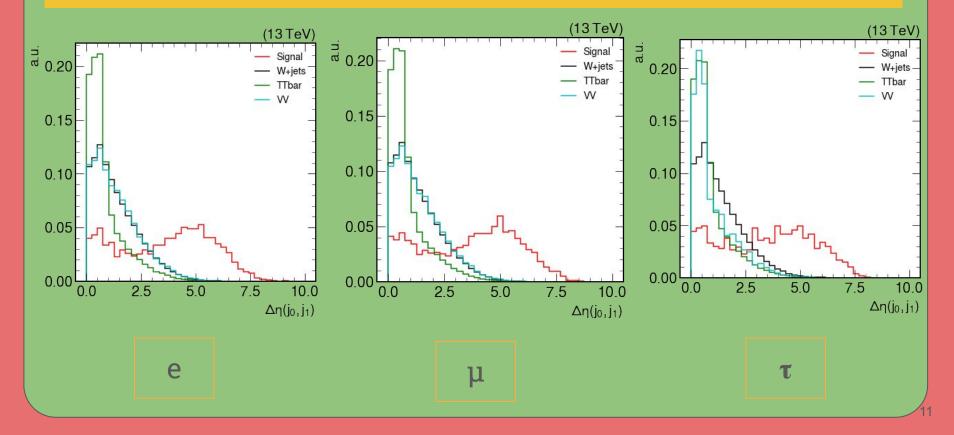
With the model implmented

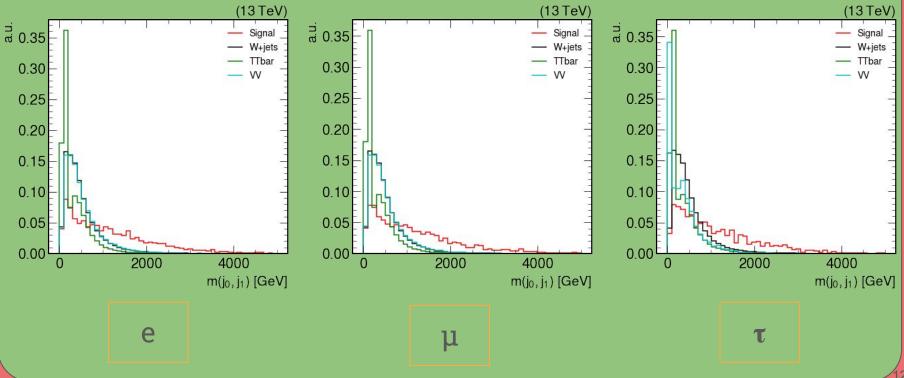
- 1. Production of MC events:
 - a. MadGraph
 - b. Pythia 8
 - c. Delphes
- 2. Design a selection of events
- 3. Find exclusion limits
- 4. Possible caveats


Differences among couplings

Vector Boson Fusion W' production at the LHC

Characteristics of the final state:


- 1. Two opposite hemispheres jets.
- 2. Large η separation among jets.
- 3. Large dijet invariant mass.
- 4. Hight p_T lepton.
- 5. Hight MET.


Search designed for 1 TeV W' (Z type 1 coupling)

VBF variables

VBF variables

 $^{-12}$

Selections

e

μ

At least two jets with $p_T > 60$ GeV, N(b)=0, N(l)=1, other leptons veto $p_T > 30$ GeV

Cut 1: $\eta(j_1) \times \eta(j_2) < 0$

Cut 2: $m_{jj} > 1000 \text{ GeV}$

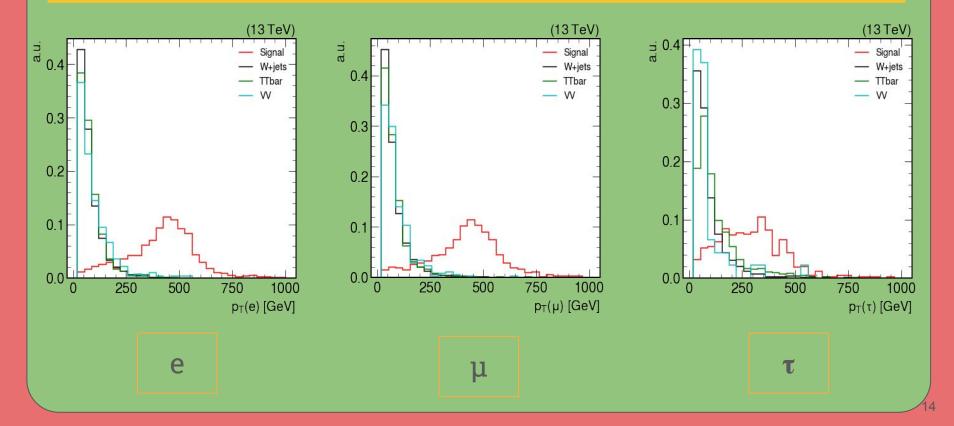
Cut 3: $|\Delta(\eta(j_1), \eta(j_2))| > 4.0$

Cut 4: $p_T(l) > 200 \text{ GeV}$

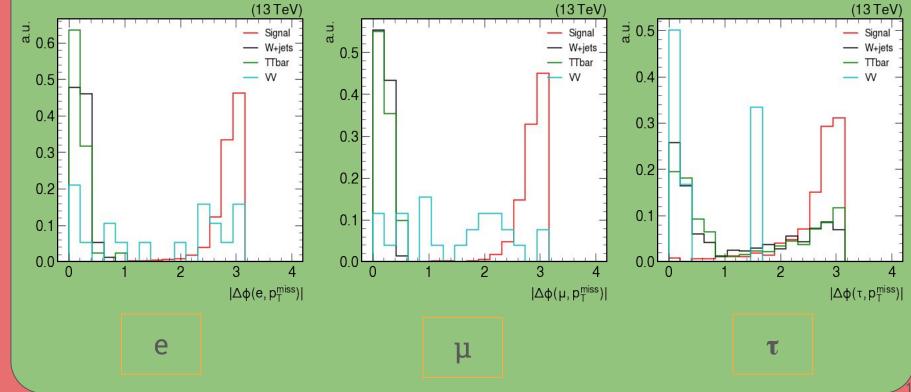
Cut 5: $p_T^{miss} > 200 \text{ GeV}$

Cut 6: $|\Delta(\phi(l), p_T^{miss})| > 1.0$

Cut 1: $\eta(j_1) \times \eta(j_2) < 0$


Cut 2: $m_{jj} > 1000 \text{ GeV}$

Cut 3: $|\Delta(\eta(j_1), \eta(j_2))| > 4.0$


Cut 4: $p_T(l) > 150 \text{ GeV}$

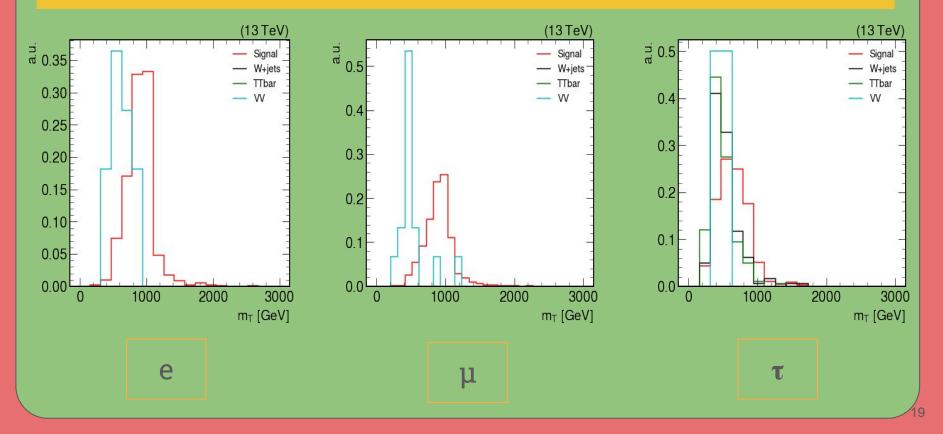
Cut 5: $p_T^{miss} > 50 \text{ GeV}$

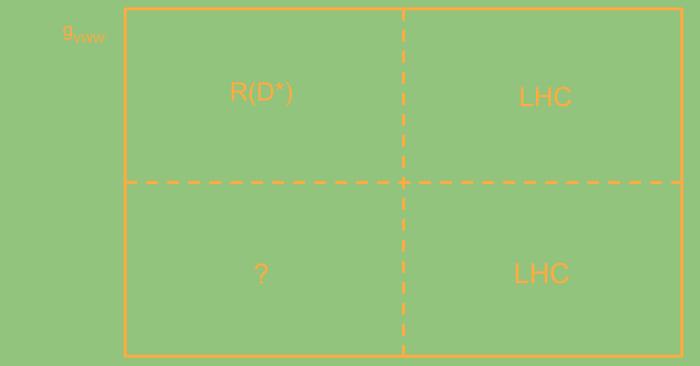
Cut 6: $|\Delta(\phi(l), p_T^{miss})| > 1.5$

16

Cut flow: Electron and Muon

	Signal	W+jets	$t\bar{t}$	VV	$S/\sqrt{S+B}$		Signal	W+jets	$tar{t}$	VV	$S/\sqrt{S+B}$
Initial	1026.0	119107.0	36528.8	1453.0	2.6	Initial	1259.4	152156.8	48246.6	1870.3	2.8
Cut 1	751.8	53656.2	10932.3	609.1	2.9	Cut 1	930.3	68480.3	14364.6	788.2	3.2
$\operatorname{Cut} 2$	487.5	10633.7	1353.6	112.2	4.3	Cut 2	593.7	13461.8	1796.9	147.8	4.7
Cut 3	427.5	2152.9	283.0	22.4	8.0	Cut 3	527.1	2771.8	365.0	27.9	8.7
Cut 4	380.7	93.9	11.2	1.8	17.2	Cut 4	474.0	118.4	17.6	2.1	19.2
Cut 5	371.1	75.1	9.4	1.4	17.4	Cut 5	459.9	91.7	11.6	1.9	19.3
Cut 6	370.2	0.0	0.0	0.7	19.2	Cut 6	459.6	0.0	0.0	0.9	21.4




17

Cut flow: Tau

	Signal	W+jets	$t ar{t}$	VV	$S/\sqrt{S+B}$
Initial	468.6	46671.3	17559.7	451.1	1.8
Cut 1	334.2	20778.8	5339.8	163.8	2.0
Cut 2	207.3	4085.0	703.3	26.5	2.9
Cut 3	178.5	860.5	137.0	5.0	5.2
Cut 4	145.5	129.5	36.6	0.8	8.2
Cut 5	145.5	129.5	36.6	0.8	8.2
Cut 6	136.8	53.6	15.7	0.3	9.5

Some further considerations

Conclusions

- 1. TGC with a W' give a new unexplored signature at the LHC.
- 2. TGC with a W' might be interesting for R(D*) anomalies.
- 3. Implemented a simplified W' model with TGC for LHC searches.
- 4. Desgined a search at the LHC for VBF produced high mass W'.
- 5. Proven sensitivity in this search.
- 6. Tau channel certainly more challenging than other leptons.
- 7. Low mass W' will be, at least, very challenging at the LHC.

Thanks

Efficiencies: Electron and Muon

	Signal [%]	W-jets [%]	$t\bar{t}$ [%]	VV [%]		Signal [%]	W-jets $[\%]$	$tar{t}$ [%]	VV [%]
Cut 1	73.27	45.05	29.93	41.92	Cut 1	73.87	45.01	29.77	42.14
Cut 2	47.51	8.93	3.71	7.72	Cut 2	47.14	8.85	3.72	7.9
Cut 3	41.67	1.81	0.77	1.54	Cut 3	41.85	1.82	0.76	1.49
Cut 4	37.11	0.08	0.03	0.12	Cut 4	37.64	0.08	0.04	0.11
Cut 5	36.17	0.06	0.03	0.10	Cut 5	36.52	0.06	0.02	0.1
Cut 6	36.08	< 0.06	< 0.03	0.05	Cut 6	36.49	< 0.06	< 0.02	0.05

Efficiencies: Tau

	Signal [%]	W+jets [%]	$t\bar{t}$ [%]	VV [%]
Cut 1	71.32	44.52	30.41	36.3
Cut 2	44.24	8.75	4.0	5.87
Cut 3	38.09	1.84	0.78	1.12
Cut 4	31.05	0.28	0.21	0.17
Cut 5	31.05	0.28	0.21	0.17
Cut 6	29.19	0.11	0.09	0.07

τ