CP-Violation search at T2K

Joe Walsh

On behalf of the T2K Collaboration

May 25th 2022

Office of Science U.S. Department of Energy

20th Conference on Flavor Physics and CP-Violation

Goals of the T2K experiment:

- 1. Measure the mixing angles θ_{23} and θ_{13}
- 2. Measure and determine its sign of Δm_{32}^2
- 3. Constrain δ_{CP}
- 4. Measure neutrino interaction cross-sections

International collaboration of ~500 Members From 78 Institutes In 12 Countries

The Tokai to Kamioka experiment

In the 3-Flavor PMNS model:

$$\begin{bmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta_{CP}} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix}$$
Pure weak state
is a combination
of mass states
$$\begin{bmatrix} w_{e} \\ v_{\tau} \end{bmatrix} = \sin \theta_{ij}$$

$$\begin{bmatrix} c_{12} & s_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix}$$

$$\begin{bmatrix} s_{ij} = \sin \theta_{ij} \\ c_{ij} = \cos \theta_{ij} \end{bmatrix}$$
No longer a pure
weak state, the neutrino
may interact as a different
$$\begin{bmatrix} v_{\mu} \\ v_{\mu} \end{bmatrix}$$

$$\pi^{+} \bigvee \mu$$

$$\mu^{+}$$

$$\begin{bmatrix} v_{\mu} \\ v_{\mu} \end{bmatrix}$$

Enhances flux at 600 MeV maximizing oscillation probability for a baseline of 295 km

6

TZK

Sequential (Frequentist)

For more in-depth analysis details see Ali's talk

Joe Walsh - Michigan State University

7

Simultaneous (Bayesian)

For more in-depth analysis details see Ali's talk

Joe Walsh - Michigan State University

TZ

Better predict SK spectra by fitting flux and xsec to ND280 spectra Constrain wrong-sign background (ν in $\overline{\nu}$ -beam or $\overline{\nu}$ in ν -beam)

T2 CC-Resonant-like W. T2K Run 1-10 Preliminary Events in bin 51 v-mode 14 events e-ring and e from pion decay 25 Ratio to unosc 20 E 15 E 10Ē 8.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reconstructed Neutrino Energy [GeV] 10

Reactor experiments constraint on θ_{13}

 0_{CP}

12

Using the PDG 2019 global average of the reactor neutrino experiment measurements of θ_{13} , we can get a better constraint on $\delta_{\rm CP}$

Exclude CP-conserving values at the 90% CL across both mass orderings

Jarlskog Invariant, Both Hierarchies

$$I_{CP} = \sin \theta_{13} \cos^2 \theta_{13} \sin \theta_{12} \cos \theta_{12} \sin \theta_{23} \cos \theta_{23} \sin \delta_{CP}$$

T2K is exploring parameterization of neutrino mixing other than 3-flavour PMNS

 J_{CP} is a Parameterization independent quantity which indicates the size of CP-violation

Comparison to NOvA and Super-K

ASSUL!

T2K and NOvA 90% contours overlap with best fit δ_{CP} - θ_{23} points just outside of 90% contours and similar θ_{23} best fit values

Consistent δ_{CP} with Super-K, but prefer different θ_{23} octant

Sensitivity of each experiment may help break degeneracies for the other in a joint fit

17

 $P(\nu_{\mu} \rightarrow \nu_{e} | \text{NO})$ 0.9 0.8 0.5 **Cosine Zenith Angle** 0.7 δ_{CP} dependent normalization 0.6 0.5 0.4 Matter effect 0.3 resonance 0.5 0.2 0.1 0 10² 10 Neutrino Energy [GeV]

Strong mass ordering dependent matter effects for upward going atmospheric v_e

Strength is dependent on θ_{23} which T2K can provide and extra constraint on

 $\delta_{
m CP}$ dependent normalization of low ${
m E}_{
u}$ u_e

New samples and new models ND280:

Proton and photon tagging

Super-K:

• Multiring v_{μ} -like samples

Beam upgrade, New ND280 subdetectors, SK-Gd

ND280 Upgrade

TPC

SFGD

TPC

T2K's δ_{CP} best fit is near $-\pi/2$ and excludes 35% of values around $+\pi/2$

CP-conserving values (0 and π) are excluded to 90% CL and Cl

T2K-NOvA and T2K-SK joint fits may be able to lift some of the degeneracies in neutrino mixing ($\delta_{\rm CP}$, θ_{23} , Δm^2_{32})

New T2K detectors allowing new physics which will improve constraint

Please see Ali Ajmi's talk next on "Precision measurements of the PMNS parameters at T2K"

Photo from recent split J-PARC and CERN collaboration meeting

Support from: U.S. Department of Energy award DE-SC0015903

BACKUP

T2K can exclude regions of δ_{CP} close to $+\pi/2$ to a confidence level of 90% across both mass orderings and over 2σ in the inverted ordering

Best fit values for δ_{CP} are negative for both mass orderings

Joe Walsh - Michigan State University

Jarlskog Invariant, Inverted Hierarchy

Probability Density Probability Density T2K 2020 Credible Intervals T2K 2020 Credible Intervals 1σ 1σ 2σ 2σ 3σ 3σ -0.05-0.04-0.03-0.02-0.01 0.01 0.02 0.03 0.04 -0.05-0.04-0.03-0.02-0.01 0.01 0.02 0.03 0.04 0 0 $J \equiv s_{13}c_{13}^2s_{12}c_{12}s_{23}c_{23}sin\delta$ $J \equiv s_{13}c_{13}^2s_{12}c_{12}s_{23}c_{23}sin\delta$

Confidence level	Interval (NH)	Interval (IH)
1σ	[-2.66, -0.97]	
90%	[-3.00, -0.49]	[-1.79, -1.09]
2σ	$[-\pi, -0.26] \cup [3.11, \pi]$	[-2.20, -0.75]
3σ	$[-\pi, 0.32] \cup [2.63, \pi]$	[-2.82, -0.14]

Feldman Cousins-corrected confidence level intervals marginalized over both mass orderings/hierarchies

Data is now more PMNS-like as statistical fluctuation in CC1 π (1Re+1d.e.) sample has reverted to the mean Significant analysis update but much of change was due to additional v-mode data in Run 10

Inclusion of new data saw a decrease in a statistical fluctuation in v-CC1 π which previously put T2K's exclusion above its sensitivity

Shift in best fit away from maximally CPV value and broadening of 2σ contours leads to 2σ boundary sitting close to π

Robustness studies show small changes in boundary positions, but these do not impact 90% exclusion of CP-conservation

Parameter	Best fit			
Data	T2K only		T2K + reactor	
Hierarchy	Normal	Inverted	Normal	Inverted
$\sin^2(2\theta_{13})$	0.109	0.120	0.0855	0.0860
$\sin^2(heta_{13})$	28.0×10^{-3}	31.0×10^{-3}	21.9×10^{-3}	22.0×10^{-3}
$\delta_{ m CP}$	-2.22	-1.29	-1.97	-1.44
$\Delta m_{32}^2 \; ({\rm NH})/ \Delta m_{31}^2 \; ({\rm IH}) \; [{\rm eV}^2/{\rm c}^4]$	2.495×10^{-3}	2.463×10^{-3}	2.494×10^{-3}	2.463×10^{-3}
$\sin^2(heta_{23})$	0.467	0.466	0.561	0.563
$-2\ln L$	597.72	598.56	598.05	600.49

PMNS values and -2lnL ($\Delta \chi^2$) values for the T2K Global best fit point

31

We test our model uncertainty by fitting alternative models.

For δ_{CP} we assess the impact on $\Delta \chi^2$ and subtract it.

See how this change affects contours/intervals

Increase in data since previous result

33% increase in ν -mode POT at Super-K and double the POT at ND280 ν -mode POT of 1.97×10^{21} and $\bar{\nu}$ -mode POT of 1.63×10^{21} .

INGRID designed to give precise beam direction and intensity

> ND280 is a magnetized tracking detector which constrains flux and interaction models at the off-axis angle as SK

CH and H2O targets as well as Argon gas TPCs and lead-scintillator EM calorimeters for MIP/EM distinction. 0.2 T field for charge discrimination and dE/dx measurement

ECAL

UA1 Magnet Yoke

POD π0-

detector)

The Super-Kamiokande Detector

50 kiloton water Cherenkov detector

Parent neutrino flavor inferred from shape of charged lepton ring

Muons are MIP-like and so v_{μ} interactions leave clear and defined rings

Electrons scatter more and so v_e interactions leave fuzzy and diffuse rings

For single ring CCQE-like events:

$$E_{v}^{\text{rec}} = \frac{m_{p}^{2} - (m_{n} - E_{b})^{2} - m_{l}^{2} + 2(m_{n} - E_{b})E_{l}}{2(m_{n} - E_{b} - E_{l} + p_{l}\cos\theta_{l})}$$

 m_p and m_n are swapped for antineutrinos E_b is a nuclear binding energy related term

Two v_{μ} / \bar{v}_{μ} -like appearance samples at Super-K Single muon-like rings (both ν and $\bar{\nu}$)

T2K Run 1-10 Preliminary

 \sim Unitarity test with v_{μ}/\bar{v}_{μ} data 3.0 ×10⁻³

	$ u_{\mu} $	$ar{ u}_{\mu}$	
$\Delta m^{\scriptscriptstyle (-)}_{32}$	$2.48\times 10^{-3}\mathrm{eV^2}$	$2.53 imes10^{-3}\mathrm{eV^2}$	
$\sin^2 \stackrel{(-)}{ heta}_{23}$	0.468	0.449	

Comparison of independent v_{μ} and \bar{v}_{μ} disappearance channel only mixing parameters.

Should be No PMNS-like CPV in $P(\nu_{\mu} \rightarrow \nu_{\mu})$ channel

Difference in $\sin\theta_{23}$ and $\sin\bar{\theta}_{23}$ would require a non-unitary mixing matrix

 θ_{23} and $\bar{\theta}_{23}$ are found to be consistent with each other in T2K run1-10 data

Currently no indication of non-unitarity at T2K

References

• Reactor Experiment Constraint

https://pdg.lbl.gov/2019/reviews/rpp2019-rev-neutrino-mixing.pdf

• NOvA 2020 Result

Paper: https://inspirehep.net/literature/1907127 Talk: https://indico.fnal.gov/event/43209/contributions/187840/ attachments/130740/159597/NOvA-Oscilations-NEUTRINO2020.pdf

• Atmospheric appearance probability plot

M. Jiang et al. [Super-Kamiokande], "Atmospheric Neutrino Oscillation Analysis with Improved Event Reconstruction in Super-Kamiokande IV," PTEP 2019 (2019) no.5, 053F01