Simple Rules for Evanescent Operators in One-Loop Basis Transformations

Jacky Kumar
Technical University Munich

FPCP May 2022
 Mississippi

arXiv: 2202.01225
by Andrzej Buras, Jason Aebischer and JK

Standard Model Effective Field Theory

No discovery of New Particles at Large Hadron Collider \rightarrow Scale Gap!

- Field content same as that of Standard Model.
- Electroweak symmetry is broken by one Higgs-doublet.
- Full SM gauge symmetry is respected.

$$
\begin{aligned}
\mathscr{L}_{\mathrm{SMEFT}} & =\mathscr{L}_{\mathrm{SM}}+\mathscr{L}_{\text {eff }} \\
\mathscr{L}_{\mathrm{eff}} & =\sum_{\text {dim }=5,6, \ldots} C_{j} O_{j}
\end{aligned}
$$

15 (Bosonic) +
19 (Single-fermion current) +
Warsaw Basis
25 (Four-fermion) = 59 Operators

General Strategy

The method

Tree-level bases transformation

$$
\begin{aligned}
Q_{\mathrm{BMU}} & =\left\{Q_{1}, Q_{2}, \ldots, Q_{N}\right\} \\
O_{\mathrm{JMS}} & =\left\{O_{1}, O_{2}, \ldots, O_{N}\right\}
\end{aligned}
$$

JMS= Jenkins, Manohar, Stoffer BMU = Buras, Misiak, Urban

$$
O_{\mathrm{JMS}}=\hat{R}^{(0)} Q_{\mathrm{BMU}}
$$

$\hat{R}^{(0)}$ is linear transformation between the two bases

Often such a transformation involves the use of Fierz relations valid only in D=4

1-loop bases transformation

Step 1: Perform Fierz transformation on every BMU operator

$$
\tilde{Q}=\sum_{k} \omega_{k} Q_{k}
$$

Current-current diagrams

Penguin diagrams

Step 2: Insert Q_{i} and \tilde{Q}_{i} into current-current and QCD penguin diagrams

$$
\begin{aligned}
& Q_{i}-\tilde{Q}_{i}=\mathrm{EV}_{\mathrm{i}} \\
& \mathrm{EV}_{\mathrm{i}}=\frac{\alpha_{s}}{4 \pi} \sum_{r} \tilde{\omega}_{r} Q_{r}
\end{aligned}
$$

Step 3: Plugin the shifts in the tree-level transformation

$$
\begin{aligned}
& O_{\mathrm{JMS}}=\hat{R} Q_{\mathrm{BMU}} \\
& \hat{R}=\hat{R}^{(0)}+\frac{\alpha_{S}}{4 \pi} \hat{R}^{(1)}
\end{aligned}
$$

Summary of the Rules

1. If no Fierz transformations are required then the corresponding blocks in $\hat{R}^{(0)}$ and $\hat{R}^{(1)}$ are simply equal.
2. If at tree-level Fierz transformations are required but the corresponding shifts vanish, then the corresponding blocks in $\hat{R}^{(0)}$ and $\hat{R}^{(1)}$ are still the same.
3. In certain blocks the necessity of performing Fierz transformation would introduce the shifts which will introduce EV operators and hence contribute to the $\hat{R}^{(1)}$.

Example:
BMJ to JMS conversion at 1-loop level

$\Delta F=1$ operators in BMU basis

Current-current

$$
\begin{aligned}
& Q_{1}=Q_{1}^{\mathrm{VLL}, u}=\left(\bar{d}_{j}^{\alpha} \gamma_{\mu} P_{L} u^{\beta}\right)\left(\bar{u}^{\beta} \gamma^{\mu} P_{L} d_{i}^{\alpha}\right), \\
& Q_{2}=Q_{2}^{\mathrm{VLL}, u}=\left(\bar{d}_{j}^{\alpha} \gamma_{\mu} P_{L} u^{\alpha}\right)\left(\bar{u}^{\beta} \gamma^{\mu} P_{L} d_{i}^{\beta}\right),
\end{aligned}
$$

QCD penguin

EW penguin

$$
\begin{array}{lc}
Q_{5}=\left(\bar{d}_{j}^{\alpha} \gamma_{\mu} P_{L} d_{i}^{\alpha}\right) \sum_{q}\left(\bar{q}^{\beta} \gamma^{\mu} P_{R} q^{\beta}\right), & Q_{6}=\left(\bar{d}_{j}^{\alpha} \gamma_{\mu} P_{L} d_{i}^{\beta}\right) \sum_{q}\left(\bar{q}^{\beta} \gamma^{\mu} P_{R} q^{\alpha}\right), \\
Q_{7}=\frac{3}{2}\left(\bar{d}_{j}^{\alpha} \gamma_{\mu} P_{L} d_{i}^{\alpha}\right) \sum_{q} Q_{q}\left(\bar{q}^{\beta} \gamma^{\mu} P_{R} q^{\beta}\right), & Q_{8}=\frac{3}{2}\left(\bar{d}_{j}^{\alpha} \gamma_{\mu} P_{L} d_{i}^{\beta}\right) \sum_{q} Q_{q}\left(\bar{q}^{\beta} \gamma^{\mu} P_{R}^{\alpha}\right), \\
Q_{9}=\frac{3}{2}\left(\bar{d}_{j}^{\alpha} \gamma_{\mu} P_{L} d_{i}^{\alpha}\right) \sum_{q} Q_{q}\left(\bar{q}^{\beta} \gamma^{\mu} P_{L} q^{\beta}\right), & Q_{10}=\frac{3}{2}\left(\bar{d}_{j}^{\alpha} \gamma_{\mu} P_{L} d_{i}^{\beta}\right) \sum_{q} Q_{q}\left(\bar{q}^{\beta} \gamma^{\mu} P_{L} q^{\alpha}\right) .
\end{array}
$$

Total $40 \Delta F=1$ independent operartors

$\Delta F=1$ operators in JMS basis

$(\bar{L} L)(\bar{L} L)$		$(\bar{R} R)(\bar{R} R)$	
$\begin{gathered} {\left[O_{d d}^{V, L L}\right]_{p r s t}} \\ {\left[O_{u d}^{V 1, L L}\right]_{p r s t}} \\ {\left[O_{u d}^{V 8, L L}\right]_{p r s t}} \\ \hline \end{gathered}$	$\begin{gathered} \quad\left(\bar{d}_{L}^{p} \gamma_{\mu} d_{L}^{r}\right)\left(\bar{d}_{L}^{s} \gamma^{\mu} d_{L}^{t}\right) \\ \quad\left(\bar{u}_{L}^{p} \gamma_{\mu} u_{L}^{r}\right)\left(\bar{d}_{L}^{s} \gamma^{\mu} d_{L}^{t}\right) \\ \left(\bar{u}_{L}^{p} \gamma_{\mu} T^{A} u_{L}^{r}\right)\left(\bar{d}_{L}^{s} \gamma^{\mu} T^{A} d_{L}^{t}\right) \end{gathered}$	$\begin{gathered} {\left[O_{d d}^{V, R R}\right]_{p r s t}} \\ {\left[O_{u d}^{V 1, R R}\right]_{p r s t}} \\ {\left[O_{u d}^{V 8, R R}\right]_{p r s t}} \end{gathered}$	$\begin{gathered} \left(\bar{d}_{R}^{p} \gamma_{\mu} d_{R}^{r}\right)\left(\bar{d}_{R}^{s} \gamma^{\mu} d_{R}^{t}\right) \\ \left(\bar{u}_{R}^{p} \gamma_{\mu} u_{R}^{r}\right)\left(\bar{d}_{R}^{s} \gamma^{\mu} d_{R}^{t}\right) \\ \left(\bar{u}_{R}^{p} \gamma_{\mu} T^{A} u_{R}^{r}\right)\left(\bar{d}_{R}^{s} \gamma^{\mu} T^{A} d_{R}^{t}\right) \\ \hline \end{gathered}$
$(\bar{L} L)(\bar{R} R)$		$(\bar{L} R)(\bar{L} R)+$ h.c.	
$\begin{gathered} {\left[O_{d d}^{V 1, L R}\right]_{p r s t}} \\ {\left[O_{d d}^{V 8, L R}\right]_{p r s t}} \\ {\left[O_{u d}^{V 1, L R}\right]_{p r s t}} \\ {\left[O_{u d}^{V 8, L R}\right]_{p r s t}} \\ {\left[O_{d u}^{V 1, L R}\right]_{p r s t}} \\ {\left[O_{d u}^{V 8, L R}\right]_{p r s t}} \\ {\left[O_{u d d u}^{V 1, L R}\right]_{p r s t}} \\ {\left[O_{u d d u}^{V 8, L R}\right]_{p r s t}} \end{gathered}$	$\begin{gathered} \left(\bar{d}_{L}^{p} \gamma_{\mu} d_{L}^{r}\right)\left(\bar{d}_{R}^{s} \gamma^{\mu} d_{R}^{t}\right) \\ \left(\bar{d}_{L}^{p} \gamma_{\mu} T^{A} d_{L}^{r}\right)\left(\bar{d}_{R}^{s} \gamma^{\mu} T^{A} d_{R}^{t}\right) \\ \left(\bar{u}_{L}^{p} \gamma_{\mu} u_{L}^{r}\right)\left(\bar{d}_{R}^{s} \gamma^{\mu} d_{R}^{t}\right) \\ \left(\bar{u}_{L}^{p} \gamma_{\mu} T^{A} u_{L}^{r}\right)\left(\bar{d}_{R}^{s} \gamma^{\mu} T^{A} d_{R}^{t}\right) \\ \left(\bar{d}_{L}^{p} \gamma_{\mu} d_{L}^{r}\right)\left(\bar{u}_{R}^{s} \gamma^{\mu} u_{R}^{t}\right) \\ \left(\bar{d}_{L}^{p} \gamma_{\mu} T^{A} d_{L}^{r}\right)\left(\bar{u}_{R}^{s} \gamma^{\mu} T^{A} u_{R}^{t}\right) \\ \left(\bar{u}_{L}^{p} \gamma_{\mu} d_{L}^{r}\right)\left(\bar{d}_{R}^{s} \gamma^{\mu} u_{R}^{t}\right)+\text { h.c. } \\ \left(\bar{u}_{L}^{p} \gamma_{\mu} T^{A} d_{L}^{r}\right)\left(\bar{d}_{R}^{s} \gamma^{\mu} T^{A} u_{R}^{t}\right)+\text { h.c. } \end{gathered}$	$\begin{gathered} {\left[O_{d d}^{S 1, R R}\right]_{p r s t}} \\ {\left[O_{d d}^{S 8, R R}\right]_{p r s t}} \\ {\left[O_{u d}^{S 1, R R}\right]_{p r s t}} \\ {\left[O_{u d}^{S 8, R R}\right]_{p r s t}} \\ {\left[O_{u d d u}^{S 1, R R}\right]_{p r s t}} \\ {\left[O_{u d d u}^{S 8, R}\right]_{p r s t}} \end{gathered}$	$\begin{gathered} \left(\bar{d}_{L}^{p} d_{R}^{r}\right)\left(\bar{d}_{L}^{s} d_{R}^{t}\right) \\ \left(\bar{d}_{L}^{p} T^{A} d_{R}^{r}\right)\left(\bar{d}_{L}^{s} T^{A} d_{R}^{t}\right) \\ \left(\bar{u}_{L}^{p} u_{R}^{r}\right)\left(\bar{d}_{L}^{s} d_{R}^{t}\right) \\ \left(\bar{u}_{L}^{p} T^{A} u_{R}^{r}\right)\left(\bar{d}_{L}^{s} T^{A} d_{R}^{t}\right) \\ \left(\bar{u}_{L}^{p} d_{R}^{r}\right)\left(\bar{d}_{L}^{s} u_{R}^{t}\right) \\ \left(\bar{u}_{L}^{p} T^{A} d_{R}^{r}\right)\left(\bar{d}_{L}^{s} T^{A} u_{R}^{t}\right) \end{gathered}$

Table 1: Non-leptonic $\Delta F=1$ operators (baryon and lepton number conserving) in the JMS basis [2]. Note that $Q_{u d d u}^{V 1, L R}$ and $Q_{u d d u}^{V 8, L R}$ have Hermitian conjugates. The same holds for the operators $(\bar{L} R)(\bar{L} R)$. This choice of basis eliminates all operators with Dirac structures $\sigma^{\mu \nu}$. The class of operators $(\bar{L} R)(\bar{R} L)+$ h.c. does not contain non-leptonic operators, but only semileptonic ones.

- E. E. Jenkins, A. V. Manohar, and P. Stoffer, Low-Energy Effective Field Theory below the Electroweak Scale: Operators and Matching, JHEP 03 (2018) 016, [arXiv:1709.04486]

Shifts for the BMU operators

Shifts due to Penguin insertions

$$
\begin{gathered}
Q_{1}=\widetilde{Q}_{1}, \quad Q_{2}=\widetilde{Q}_{2}+\frac{1}{3} \frac{\alpha_{s}}{4 \pi} P, \\
P=Q_{4}+Q_{6}-\frac{1}{3}\left(Q_{3}+Q_{5}\right) . \\
Q_{11}=\widetilde{Q}_{11}+\frac{2}{3} \frac{\alpha_{s}}{4 \pi} P, \quad Q_{k}=\widetilde{Q}_{k}, \quad k=12-18 . \\
Q_{3}=\widetilde{Q}_{3}+\frac{2}{3} \frac{\alpha_{s}}{4 \pi} P, \quad Q_{4}=\widetilde{Q}_{4}-\frac{N_{f}}{3} \frac{\alpha_{s}}{4 \pi} P, \quad Q_{5}=\widetilde{Q}_{5}, \quad Q_{6}=\widetilde{Q}_{6}, \\
Q_{7}=\widetilde{Q}_{7}, \quad Q_{8}=\widetilde{Q}_{8}, \quad Q_{9}=\widetilde{Q}_{9}-\frac{1}{3} \frac{\alpha_{s}}{4 \pi} P, \quad Q_{10}=\widetilde{Q}_{10}-\frac{1}{3}\left(N_{u}-\frac{N_{d}}{2}\right) \frac{\alpha_{s}}{4 \pi} P .
\end{gathered}
$$

Shifts for the BMU operators

Shifts due to current-current insertions

$$
\begin{array}{ll}
Q_{1}^{\mathrm{SRR}, Q}=\widetilde{Q}_{1}^{\mathrm{SRR}, \mathrm{Q}}+\frac{\alpha_{s}}{4 \pi} \sum_{k=1,2,3,4} a_{k} Q_{k}^{\mathrm{SRR}, \mathrm{Q}} & Q_{1}^{\mathrm{SRR}, D}=\widetilde{Q}_{1}^{\mathrm{SRR}, \mathrm{D}}+\frac{\alpha_{s}}{4 \pi} \sum_{k=2,4} A_{k} Q_{k}^{\mathrm{SRR}, \mathrm{D}}, \\
Q_{2}^{\mathrm{SRR}, Q}=\widetilde{Q}_{2}^{\mathrm{SRR}, \mathrm{Q}}+\frac{\alpha_{s}}{4 \pi} \sum_{k=1,2,3,4} b_{k} Q_{k}^{\mathrm{SRR}, \mathrm{Q}} & Q_{2}^{\mathrm{SRR}, D}=\widetilde{Q}_{2}^{\mathrm{SRR}, \mathrm{D}}+\frac{\alpha_{s}}{4 \pi} \sum_{k=2,4} B_{k} Q_{k}^{\mathrm{SRR}, \mathrm{D}}, \\
Q_{3}^{\mathrm{SRR}, Q}=\widetilde{Q}_{3}^{\mathrm{SRR}, \mathrm{Q}}+\frac{\alpha_{s}}{4 \pi} \sum_{k=1,2,3,4} c_{k} Q_{k}^{\mathrm{SRR}, \mathrm{Q}} & Q_{3}^{\mathrm{SRR}, D}=\widetilde{Q}_{3}^{\mathrm{SRR}, \mathrm{D}}+\frac{\alpha_{s}}{4 \pi} \sum_{k=2,4} C_{k} Q_{k}^{\mathrm{SRR}, \mathrm{D}}, \\
Q_{4}^{\mathrm{SRR}, Q}=\widetilde{Q}_{4}^{\mathrm{SRR}, \mathrm{Q}}+\frac{\alpha_{s}}{4 \pi} \sum_{k=1,2,3,4} d_{k} Q_{k}^{\mathrm{SRR}, \mathrm{Q}} & Q_{4}^{\mathrm{SRR}, D}=\widetilde{Q}_{4}^{\mathrm{SRR}, \mathrm{D}}+\frac{\alpha_{s}}{4 \pi} \sum_{k=2,4} D_{k} Q_{k}^{\mathrm{SRR}, \mathrm{D}}
\end{array}
$$

EV contributions for the VLL sector

$$
\begin{aligned}
& {\left[O_{u d}^{V 1, L L}\right]_{11 j i}={ }_{\mathcal{F}}^{=} Q_{1}+E_{1}^{\text {VLL }},} \\
& \text { Tree-level basis change relations } \\
& {\left[O_{u d}^{V 8, L L}\right]_{11 j i}=-\frac{\mathcal{F}}{6} Q_{1}+\frac{1}{2} Q_{2}+E_{2}^{\mathrm{VLL}},} \\
& {\left[O_{u d}^{V 1, L L}\right]_{22 j i} \stackrel{\mathcal{F}}{=}-Q_{1}+\frac{1}{3} Q_{3}+\frac{2}{3} Q_{9}+E_{3}^{\mathrm{VLL}},} \\
& {\left[O_{u d}^{V 8, L L}\right]_{22 j i}=\frac{\mathcal{F}}{=} \frac{1}{6} Q_{1}-\frac{1}{2} Q_{2}-\frac{1}{18} Q_{3}+\frac{1}{6} Q_{4}-\frac{1}{9} Q_{9}+\frac{1}{3} Q_{10}+E_{4}^{\mathrm{VLL}},} \\
& {\left[O_{d d}^{V, L L}\right]_{j i k k}=\frac{2}{3} Q_{3}-\frac{2}{3} Q_{9}-Q_{11},} \\
& {\left[O_{d d}^{V, L L}\right]_{j k k i}=\frac{\mathcal{F}}{3} \frac{2}{3} Q_{4}-\frac{2}{3} Q_{10}-Q_{11}+E_{5}^{\mathrm{VLL}},} \\
& {\left[O_{d d}^{V, L L}\right]_{j i i i}=\frac{1}{2} Q_{11}+\frac{1}{2} Q_{14},} \\
& {\left[O_{d d}^{V, L L}\right]_{j i j j}=\frac{1}{2} Q_{11}-\frac{1}{2} Q_{14} .}
\end{aligned}
$$

$$
\begin{aligned}
E_{1}^{\mathrm{VLL}} & =\left[O_{u d}^{V 1, L L}\right]_{11 j i}-Q_{1}=\widetilde{Q}_{1}-Q_{1}=0, \\
E_{3}^{\mathrm{VLL}} & =\left[O_{u d}^{V 1, L L}\right]_{22 j i}-\left(-Q_{1}+\frac{1}{3} Q_{3}+\frac{2}{3} Q_{9}\right)=\widetilde{Q}_{1}-Q_{1}=0 . \\
E_{2}^{\mathrm{VLL}} & =\left[O_{u d}^{V 8, L L}\right]_{11 j i}-\left(-\frac{1}{6} Q_{1}+\frac{1}{2} Q_{2}\right) \\
& =\frac{1}{6}\left(Q_{1}-\widetilde{Q}_{1}\right)-\frac{1}{2}\left(Q_{2}-\widetilde{Q}_{2}\right)=-\frac{1}{6} \frac{\alpha_{s}}{4 \pi} P, \\
E_{4}^{\mathrm{VLL}} & ==\left[O_{u d}^{V 8, L L}\right]_{22 j i}-\left(\frac{1}{6} Q_{1}-\frac{1}{2} Q_{2}-\frac{1}{18} Q_{3}+\frac{1}{6} Q_{4}-\frac{1}{9} Q_{9}+\frac{1}{3} Q_{10}\right) \\
& =\frac{1}{6}\left(\widetilde{Q}_{1}-Q_{1}\right)+\frac{1}{2}\left(Q_{2}-\widetilde{Q}_{2}\right)=\frac{1}{6} \frac{\alpha_{s}}{4 \pi} P, \\
E_{5}^{\mathrm{VLL}} & =\left[O_{d d}^{V, L L}\right]_{j k k i}-\left(\frac{2}{3} Q_{4}-\frac{2}{3} Q_{10}-Q_{11}\right) \\
& =\frac{2}{3}\left(\widetilde{Q}_{4}-Q_{4}\right)-\frac{2}{3}\left(\widetilde{Q}_{10}-Q_{10}\right) \\
& =\frac{2 N_{f}+N_{d}-2 N_{u}}{9} \frac{\alpha_{s}}{4 \pi} P .
\end{aligned}
$$

Fierz: Yes Evanascent: No

Fierz: Yes Evanascent: Yes

Summary

In an EFT, it might be useful to work simultaneously with more than one operator basis.

JMS basis for WET is useful for the matching to SMEFT, however, for the running below the EW scale at the NLO level, the BMU is more convenient.

We have presented a simple procedure to perform the transformations of the bases at the 1 -loop level. Formal techniques are available in the literature:
A. J. Buras and P. H. Weisz, QCD Nonleading Corrections to Weak Decays in Dimensional Regularization and 't Hooft-Veltman Schemes, Nucl. Phys. B333 (1990) 66-99 M. J. Dugan and B. Grinstein, On the vanishing of evanescent operators, Phys. Lett. B256 (1991) 239-244.

See also:
S. Herrlich and U. Nierste, Evanescent operators, scheme dependences and double insertions, Nucl. Phys. B455 (1995) 39-58, [hep-ph/9412375]
A. J. Buras, M. Misiak, and J. Urban, Two loop QCD anomalous dimensions of flavor changing four quark operators within and beyond the standard model, Nucl. Phys. B586 (2000) 397-426, [hep-ph/0005183].
J. Aebischer, C. Bobeth, A. J. Buras, J. Kumar, and M. Misiak, General non-leptonic $\Delta F=1$ WET at the NLO in QCD,

JHEP 11 (2021) 227, [arXiv:2107.10262].

Thanks for your attention!

