Precision Measurements of the PMNS Parameters with T2K Data

Ali Ajmi University of Winnipeg/TRIUMF

(on behalf of the T2K Collaboration)

The 2022 Conference on Flavor Physics and CP Violation (FPCP-2022)

@University of Mississippi

23-27 May, 2022

Ali Ajmi, UWinnipeg

< D > < A > >

23-27 May, 2022

T2K: Precision Measurements

FPCP 2022

The T2K Data for this Analysis:

The Analysis Schematics: already explained by Joe in previous talk Quick Reminder

Flux Predictions and Improvements:

- Hadron production simulations by Fluka, propagations by GEANT3 (GCALOR)
- Interactions constrained with NA61/SHINE (CERN) data, also from beam monitor/INGRID
- New T2K graphite replica target is used, instead of thin target.
- Flux uncertainties reduced from 8% to 5%
- Wrong-sign comp. in $\bar{\nu}$ -mode \rightarrow An extra set of sample for analysis.

Being Worked upon:-

- New: NA61/SHINE replica-target 2010 data to be used, adds Kaons and proton yields and overall larger statistics
- Uncertainty to reduce to 4%. *Stay Tuned!!* Ali Ajmi, UWinnipeg

T2K: Precision Measurements

FPCP 2022

The Near Detectors of T2K:

- On-axis INGRID detector (Scintillator/Fe) -monitor beam stability, spill counts
- 2.5° off-axis composite detector, 0.2 T \vec{B} : - 2 Fine Grained scintillating detectors FGD1 (CH) and FGD2 (CH,H2O)
- 3 Time Projection Chambers (TPCs)
- ECal surrounding inner detectors
- One Upstream detector, and SMRDs

- FGDs as neutrino targets, tracker
- TPC for PID, tracking
- Magnetic field: charge and momentum
- Constraints on cross-section models, followed by Near Detector Fitting.

Neutrino Interactions

- Cross-Section Measurements \rightarrow Updating Neutrino Interaction Models.
- T2K updates NEUT, iteratively.
- To use in ND-Fits

- Three main interaction channels: - CCQE (and 2p2h); CC-RES; CC-DIS
- ND samples selected by topology based on reconstructed pion multiplicity

 Several Neutrino Cross Section Results Published, and more going on.

・ロ・ ・ 日・ ・ 田・

7/27

э

.

Ali Ajmi, UWinnipeg

To apply a correction for the q_3 shift observed in the data

scattering data $(q_3=3$ -momentum transfer in nuclear models)

Shell model built largely from electron-scattering data; Nuclear ground states better . defined; and better outgoing nucleon kinematics

New $|q_3|$ -dependent removal energy treatment from comparing NEUT to electron

- RFG+RPA model earlier \rightarrow Spectral Function Model used now. .
- Significant updates applied on NEUT 5.4.0 model (arxiv:2106.15809) .
- (CCQE)

Cross Section Modelling and Improvements

ND Samples and Improvements

- For Current Analysis: $6-\nu+12-\bar{\nu}=18$ samples
- Larger Statistics than earlier
- Topology based selections: $CC0\pi$, $CC1\pi$, CC-Other
- Constrain CCQE, CCRES, CCDIS channels

New samples at ND and SK for upcoming analyses:

- p/γ-tagging: Selections based on -charge depositions & PIDs in ECAL,
 -e/p likelihood in ECAL; p-likelihood in TPCs
 -energy depositions in FGD
 - Photons produce topologies relatable to EM-showers in ECal.
- Purity in samples to improve by ${\sim}5\text{-}10\%$

Near Detector Fits

- Prefit ND sample + Constraints from Flux and Cross section Models → Postfit ND distribution
- An extended binned likelihood fit to the ND sample
- Introduces anticorrelations between flux and cross-section uncertainties
- Model after fit reproduces well the data (p-value of 0.74)
- FD prediction of the spectra at SuperK; Flux and cross-section uncertainties in CC0π samples reduce from ~13% to ~4%

Ali Ajmi, UWinnipeg

At the Far Detector (SuperK)

- 2 (of 5) samples with μ-like rings (one in ν-mode, one in ν̄-mode) (For Details on SK sample: See Joe's Talk)
- Systematic uncertainty: 3.0 (4.0)% in ν -mode ($\bar{\nu}$ -mode)

Ali Ajmi, UWinnipeg

The Current PMNS Precision Status:

• Analysis using five SK samples for T2K Run 1-10:

-Upper octant preference (77.1% prob),

-Normal Ordering of Mass hierarchy preferred at 80.8%

• Frequentists confidence intervals (left) agree with the Bayesian credible intervals (below).

$\sin^2 \theta_{23}$:-								
		20	(Bayesian)					
	Hierarchy	Most Probable Value	Range					
T2K only	Normal	0.471	[0.452, 0.508] and [0.530, 0.568]					
	Inverted	0.469	[0.449, 0.508] and [0.531, 0.565]					
	Both	0.471	[0.451, 0.508] and [0.530, 0.567]					
T2K + reactor	Normal	0.559	[0.504, 0.583]					
	Inverted	0.560	[0.519, 0.585]					
	Both	0.559	[0.507, 0.584]					
Δm^2_{32} :-								
	Hierarchy	Most Probable Valu	ie Range					
T2K only	Normal	$2.487 \times 10^{-3} \mathrm{eV^2}$	$[2.437, 2.537] \times 10^{-3} \mathrm{eV}^2$					
	Inverted	$2.457 \times 10^{-3} \mathrm{eV^2}$	$[2.407, 2.507] \times 10^{-3} \mathrm{eV}^2$					
T2K + reactor	Normal	$2.485 \times 10^{-3} \mathrm{eV^2}$	$[2.436, 2.536] \times 10^{-3} eV^2$					
	Inverted	$2.456 \times 10^{-3} \mathrm{eV^2}$	$[2.406, 2.506] \times 10^{-3} \mathrm{eV^2}$					

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ■ のへで 12/27

Ali Ajmi, UWinnipeg

T2K: Precision Measurements

Ali Ajmi, UWinnipeg

23-27 May, 2022

The ND Upgrade

- Can measure kinematics of untracked pions using decay electron position!
- More sensitive ~5 times higher efficiency Ali Ajmi, UWinnipeg

- To overcome limited proton/neutron acceptance
- Improved pion tracking thresholds; decay electron tagging; wider phase space

Summary

- \bigstar Latest neutrino oscillation results from T2K, using 3.8×10²¹ POT data shown today.
- ✤ Slight preference for Non-maximal mixing; Upper octant & Normal Ordering MH preferred.
- ✤ Newer Results Coming SOON, with Improved Sample Selection, Reduced Predicted Flux Uncertainties, and more Robust Cross Section Models, ... Stay Tuned!!
- \bigstar Many Cross Section Measurements completed, more going on.
- ✤ T2K-neutrino Interaction Model being updated with every iteration of Oscillation Analysis. NEUT seeing multiple improvements in near future.
- \clubsuit A complete set of uncertainties on semi-inclusive models will be crucial for upcoming oscillation measurements
- \bigstar T2K-II upgrade process ongoing, higher beam power, more efficient detector systems.
- ✤ Other ongoing activities: T2K+NOvA and T2K+SK combined analyses.5/27
 Ali Ajmi, UWinnipeg
 15
 23-27 May, 2022

Thank you !

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ali Ajmi, UWinnipeg

Back ups:

Ali Ajmi, UWinnipeg

23-27 May, 2022

17/27

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ 2 ● ○ 2 ●

T2K: Precision Measurements

Quick Reminder of the Analysis Pipeline

Ali Ajmi, UWinnipeg

List of Recent Cross Section Results

- First measurements of the Transverse Kinematics Imbalance in ν_{μ} CC1 π +Np interactions (PhysRevD.103.112009 (2021))
- The First muon anti-neutrino CC0 π cross section measurement on water (PhysRevD.102.012007(2020))
- The first combined ν_{μ} and $\bar{\nu}_{\mu}$ double differential CC0 π cross section on CH (PhysRevD.101.112001(2020))
- The first combined ν_{μ} double differential CC0 π cross section on oxygen and carbon (PhysRevD.101.112004(2020))
- The first CC0 π measurement using one of the WAGASCI module (PTEP 2021, Issue 4(2021))
- The first T2K CC1 π^+ cross section on CH (PhysRevD 101.012007(2020))
- Electron (anti)neutrino charged current inclusive cross sections (J.High Energ. Phys. 2020,114)

More Analyses ongoing:

- On-/off-axis combined analysis
- Different channels: CC Coherent, $\mathrm{CC}1\pi$ on different targets
- Combined interaction channels
- More measurements with the new detectors at 1.5° off-axis: WAGASCI, BabyMIND.

Back to Neutrino Interactions

ND Samples :

▲□▶ ▲□▶ ▲ ■▶ ▲ ■▶ ▲ ■ の Q @ 20/27

Ali Ajmi, UWinnipeg

23-27 May, 2022

23-27 May, 2022

24/27

(日) (部) (E) (E) (E)

The Current PMNS Precision Status: More Systematics Details

	$ $ 1R μ $ $		$1 \mathrm{R} e$		
Error source (units: $\%$)	$\ $ FHC	RHC FHC	C RHC	FHC CC1 π^+	FHC/RHC
Flux Xsec (ND constr)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c} 2.8 & 2.8 \\ 3.0 & 3.2 \end{array}$	$2.9 \\ 3.1$	2.8 4.2	1.4
Flux+Xsec (ND constr)	2.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.3	4.1	1.7
Xsec (ND unconstrained) SK+SI+PN	$ \begin{array}{c c} 0.6 \\ 2.1 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 3.6\\ 3.9 \end{array}$	$\begin{array}{c} 2.8\\ 13.4 \end{array}$	$3.8 \\ 1.2$
Total	3.0	4.0 4.7	5.9	14.3	4.3

25/27

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The Spectral function:

- SF: Defines a nucleon ground state; as a probability function of finding a nucleon with a particular Nuclear removal energy (E_B) and Momentum (k)
- P_{MF} : pdf for Single nucleon from primary vertex; Nucleons in Mean-Field potential; Shell model built from QE (e,e'p) data
- P_{corr}: pdf for Two nucleons from primary vertex. Made of short range correlated nucleons (~20%). < ≥ > ≤ ⊃ < <

The Oscillation Probability:

Ali Ajmi, UWinnipeg

23-27 May, 2022

27/27

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ 2 ● ○ 2 ●