Muon g-2 and EDM Experiments as Dark Matter Detectors

Ryan Janish

(Fermilab)

[RJ & Ramani, 2006.10069]

Muonic Dark Matter

We lack direct measurements of DM-muon couplings

Limits exist from astrophysics and cosmology

[Dror et al, 1909.12845], [Croon et al, 2006.13942], [Grifols and Masso, 9610205]

Limits may be inferred from virtual muons

Muonic Dark Matter

We lack direct measurements of DM-muon couplings

Limits exist from astrophysics and cosmology

[Dror et al, 1909.12845], [Croon et al, 2006.13942], [Grifols and Masso, 9610205]

Limits may be inferred from virtual muons

g-2 and EDM precession data can be used to detect or directly constraint DM-muon interactions

DM may provide a background field that drives distinct spin precession trajectories.

DM-muon interactions may explain the g-2 anomaly without modification to the intrinsic muon g-factor

g-2 and EDM Experiments

Measure the precession frequency $\vec{\omega}_a$ in a known background field

Magnetic dipole measurement (g - 2)

$$\vec{\omega}_a = -\frac{e}{2m_\mu} \left(g_\mu - 2 \right) \vec{B}$$

Measure $|\vec{\omega}_a|$

[Albahri et al, 2104.03247]

Electric dipole measurement (EDM)

$$\vec{\omega}_a = -\frac{e}{2m_\mu} \left(g_\mu - 2 \right) \vec{B} - d_\mu \vec{v} \times \vec{B}$$

Measure $\vec{\omega}_a \perp \vec{B}$

[Bennett et al, 0811.1207]

g-2 Stack and Fit

the stacked signal

Each bunch lasts $\approx 640~\mu s$ (about 10 muon lifetimes) and observes about 1000 decay positrons.

Align and sum $\approx 10^7$ bunches, collected over years (individual bunch data is retained).

g-2 Precision

FNAL Run I:
$$\frac{\delta\omega_a}{\omega_a}\approx 0.5\cdot 10^{-6}$$

 3.3σ larger than the SM prediction.

[Abi et al, 2104.03281] [Davier et al, 1908.00921]

This is similar to the previous BNL result, but will improve with future runs.

[Bennet et al, 0602035]

FNAL projection: $\frac{\delta\omega_a}{\omega_a} \approx 10^{-7}$ [Grange et al, 1501.06858]

J-PARC projection: $\frac{\delta\omega_a}{\omega_a} \approx 10^{-7}$ [Abe et al, 1909.03047]

EDM Precision

BNL:
$$\frac{\omega_{\perp}}{\omega_a} \gtrsim 5 \cdot 10^{-4}$$

BNL null result limits the muon EDM to a value slightly too small (4σ)

to explain the total precession anomaly:

$$|d_e| < 1.9 \cdot 10^{-19} e \,\mathrm{cm}$$

[Bennett et al, 0811.1207]

Fermilab and J-PARC projection:

$$\frac{\omega_{\perp}}{\omega_a} \gtrsim 5 \cdot 10^{-6}$$

[Grange et al, 1501.06858]

[Abe et al, 1909.03047]

Frozen spin projection:

$$\frac{\omega_{\perp}}{\omega_{\rm a}} \gtrsim 10^{-9}$$

[Adelmann et al, 0606034]

Dark matter may be a classical, oscillating field

$$\phi(t) = \phi_0 \cos(m_{\rm dm} t)$$

Dark matter may be a classical, oscillating field

$$\phi(t) = \phi_0 \cos(m_{\rm dm} t)$$

DM field is effectively static.

DM field is static over each bunch but oscillates many times over the lifetime of the experiment.

DM-perturbed Spin Precession

DM background field may apply a torque to muon spins:

$$\dot{\vec{S}} = \vec{\omega}_a(t) \times \vec{S}$$

$$\vec{\omega}_a(t) = \vec{\omega}_{\rm sm} + \vec{\omega}_{\rm dm}(t)$$

$$\vec{\omega}_{sm} = -\frac{e}{m_{\mu}} a_{\mu} \vec{B}$$

Standard Model precession Time-dependent perturbation

Oscillates at DM mass Amplitude set by DM-muon coupling Exact form is model dependent

Pseudoscalar DM of mass m_a with an interaction:

DM background

$$\mathcal{L}\supset -rac{i}{2}g\,a\,ar{\mu}\,\sigma_{lphaeta}\,\gamma_5\,\mu\,F^{lphaeta}$$
 EDM operator

DM field generates a time-varying EDM for the muon. The precession frequency is:

$$\vec{\omega}_a = \omega_{sm} \hat{B} + \omega_{dm} \cos(m_a t) \left(\hat{p} \times \hat{B} \right)$$
$$\omega_{dm} = 2g \frac{\sqrt{2\rho_{dm}}}{m_a} v_{\mu} B$$

$$\mathcal{L} \supset -\frac{i}{2}g \, a \, \bar{\mu} \, \sigma_{\alpha\beta} \, \gamma_5 \, \mu \, F_{,}^{\alpha\beta} \qquad \omega_{dm} = 2g \frac{\sqrt{2\rho_{dm}}}{m_a} v_{\mu} B$$

$$\mathcal{L} \supset -\frac{i}{2}g \, a \, \bar{\mu} \, \sigma_{\alpha\beta} \, \gamma_5 \, \mu \, F_{,}^{\alpha\beta} \, \omega_{dm} = 2g \frac{\sqrt{2\rho_{dm}}}{m_a} v_{\mu} B$$

$$\mathcal{L} \supset -\frac{i}{2}g \, a \, \bar{\mu} \, \sigma_{\alpha\beta} \, \gamma_5 \, \mu \, F_{,}^{\alpha\beta} \, \omega_{dm} = 2g \frac{\sqrt{2\rho_{dm}}}{m_a} v_{\mu} B$$

$$\vec{\omega}_a = \omega_{sm}\hat{B} + \omega_{dm}\cos(m_a t)\left(\hat{p} \times \hat{B}\right)$$

In g-2 measurement (total positron count):

$$|\vec{\omega}_a| = \sqrt{\omega_{sm}^2 + \omega_{dm}^2 \cos^2(m_a t)} \approx \omega_{sm} + \frac{\omega_{dm}^2}{2\omega_{sm}} \cos^2(m_a t)$$

$$= \left(\omega_{\rm sm} + \frac{1}{4} \frac{|\omega_{\rm dm}|^2}{\omega_{\rm sm}}\right) + \frac{1}{4} \frac{|\omega_{\rm dm}|^2}{\omega_{\rm sm}} \cos\left(2m_{\rm dm}t\right)$$

Positive frequency shift

Can explain g-2 anomaly

Frequency modulation

Signature of background DM-muon interactions

Stacking of the FM Precession Signal

Could FM precession be hiding in the g-2 data?

Yes - stacking averages away the modulation.

The stacked data is a sum of cosines at different frequencies:

$$S_p \sim \left(\text{oscillation at }\langle \omega(t)\rangle\right) \cdot \left(\text{envelope with scale }\sigma_{\omega(t)}\right)$$

Small net shift from the SM value

$$\langle \omega(t) \rangle \approx \omega_{\rm sm} + \frac{\omega_{\rm dm}^2}{4\omega_{\rm sm}}$$

Envelop is nearly flat over each bunch

$$\sim \left(1 - \frac{\omega_{\rm dm}^2}{4\omega_{\rm sm}}t\right)$$

Time-Resolved Frequency Tracking

Can we detect FM precession?

Yes – use archived bunch data to measure the precession frequency as a function of time.

Time-Resolved Frequency Tracking

Fourier transform of $\omega_a(t)$:

Assuming a uniform spacing of bunches – in reality, the mass resolution is not uniform and requires actual bunch timings

$$\vec{\omega}_a = \omega_{sm}\hat{B} + \omega_{dm}\cos(m_a t)\left(\hat{p} \times \hat{B}\right)$$

In EDM search (net vertical count):

$$S_B = S_0 \frac{\omega_{dm}}{\omega_{sm}} \cos(m_a t) \sin\left[\left(\omega_{sm} + \frac{\omega_{dm}^2}{4\omega_{sm}}\right) t + \frac{\omega_{dm}^2}{8\omega_{sm}} \sin(2m_a t)\right]$$

Amplitude Modulation

This averages away in a stacked analysis

$$S_B \sim \frac{1}{\sqrt{N_{\rm bunches}}} \frac{\omega_{dm}}{\omega_{sm}} S_p$$

Frequency shift and modulation

Identical to that of the total count oscillation

Can search for modulating EDM with bunch-by-bunch analysis, analogous to the modulating frequency search

Expected Reach Muon-ALP EDM Coupling

DM-induced Magnetic Dipole Moment

Scalar DM ϕ of mass m_ϕ with a muon Yukawa coupling:

$$\mathcal{L} \supset y \, \phi \bar{\mu} \mu$$

DM background field is:

$$\phi(t) = \sqrt{\frac{2\rho_{\rm dm}}{m_{\phi}}} \cos\left(m_{\phi}t\right)$$

DM field generates a time-varying muon mass and MDM:

$$m(t) = m_{\mu} + y\phi(t)$$

$$\vec{\mu} = \frac{e g_{\mu}}{2 m(t)} \vec{S}$$

A Scalar DM Precession Signal

Rest frame precession frequency:

$$\vec{\omega}_a(t) = -\frac{e}{m(t)} a_\mu \vec{B}$$

$$\approx \vec{\omega}_{\rm sm} \left[1 - \frac{y}{m_\mu} \sqrt{\frac{2\rho_{\rm dm}}{m_\phi}} \cos(m_\phi t) \right]$$

Solve the precession equation:

Spin precesses about \hat{B} with an instantaneous angular frequency $|\vec{\omega}_a(t)|$.

Frequency modulation of total positron count No net frequency shift No EDM signals, static nor modulated

Detection Reach for DM-Muon Yukawa

Muon g-2 and EDM Experiments as DM Detectors

A new search for ultralight DM using muon spin targets.

Direct, terrestrial limits on muophillic DM.

Detection reach for DM-muon interactions, pending reanalysis of previous and upcoming g-2 data.

DM may explain the muon g-2 anomaly via coherent interaction with DM background field (not via loops).

Approach improves with ongoing development of g-2 and EDM measurement techniques (e.g., frozen spin experiments).

Muon g-2 and EDM Experiments as DM Detectors

Extra Slides

ALP-Muon Wind

$$\mathcal{L} \supset g \, \partial_{\nu} a \, \bar{\mu} \, \gamma^{\nu} \gamma_5 \, \mu$$

In the rest frame of the muon: $\,H\supset g\, ec{
abla} a\cdot ec{S}\,$

Muon spin precesses about the relative velocity of DM, which is essentially the muon velocity.

$$\vec{\omega_a} = \omega_{sm}\hat{B} + \omega_{dm}\cos(m_a t)\,\hat{v}$$
$$\omega_{dm} = g\,\sqrt{2\rho_{dm}}$$

This is an oscillating orthogonal perturbation – the precession dynamics and detection limits are qualitatively the same as the axion EDM coupling.

The two counts are now in-phase, which may introduce additional systematic errors.

[Bennett et al, 0811.1207]

Detection Reach for ALP-Muon Wind

Muonic Vector DM

Vector DM generates a dark electric and magnetic field,

$$E_{\rm dm} = \sqrt{2\rho_{\rm dm}}\cos\left(m_{\rm dm}t + \alpha\right)$$
$$B_{\rm dm} = v_{\rm dm}\sqrt{2\rho_{\rm dm}}\sin\left(m_{\rm dm}t + \alpha\right)$$

B_{dm} is too small to be observed in existing experiments

$$\frac{\omega_{\rm dm}}{\omega_{\rm sm}} = \frac{g_{\rm dm}}{e} \frac{B_{\rm dm}}{B_0} \approx 10^{-6} g_{\rm dm} \left(\frac{3 \, \rm T}{B_0}\right)$$

E_{dm} may be observed in experiments that do not use the "magic momentum" to cancel electric field precession (e.g., J-PARC, frozen spin)

* disfavored by NS-NS inspiral and solar neutrino oscillations ($L_{\mu}-L_{ au}$)

Muonic Vector DM

Ultralight vector DM manifests as a local dark electric and magnetic field:

$$E_{\rm dm} = \sqrt{2\rho_{\rm dm}}\cos\left(m_{\rm dm}t\right)$$

$$B_{\rm dm} = v_{\rm dm} E_{\rm dm}$$

Four distinct contributions to precession – the dominant one is the component of $\vec{E}_{\rm dm}$ transverse to the orbital plane:

$$\vec{\omega}_{\rm dm} = \frac{g_{\rm dm}}{m_{\mu}\gamma^2} \, \vec{v} \times \vec{E}_{\rm dm}$$

Not observable at BNL or Fermilab, as vertical trapping EM fields will screen $\vec{E}_{\rm dm}$! [Bennett et al, 0602035] [Grange et al, 1501.06858]

Observed at J-PARC or future frozen spin searches.

[Abe et al, 1909.03047] [Adelmann et al, 0606034]

Muonic Vector DM

Muonic Dark Matter

Existing bounds on DM – muon interactions are from astrophysics, cosmology, or virtual effects.

Astrophysics and Cosmology

Long range forces on neutron stars [Dror et al, 1909.12845], [Poddar et al, 1908.09732]

Supernovae cooling [Bollig et al, 2005.07141], [Croon et al, 2006.13942]

 $BBN(N_{eff})$ [Grifols and Masso, 9610205]

BH Superradiance [Arvanitaki et al, 821575], ...

Loop effects

Muon g - 2 [Chen et al, 1701.07437]

Induced interactions [Arvanitaki et al, 1405.2925], [Beznogov et al, 1806.07991], ...

A direct terrestrial search is epistemically distinct and provides an opportunity for a surprising discovery.

Laboratory ceiling is higher (sensitivity will improve).

Dark matter may be a classical, oscillating field

$$\phi(t) = \phi_0 \cos(m_{\rm dm} t)$$

Amplitude is set by the local DM energy density and DM mass for scalars

Frequency is roughly the DM mass

Frequency is properly the total energy:

$$\omega_{dm} = m_{dm} + \frac{1}{2}m_{dm}v_{dm}^2$$
$$v_{dm} \sim 10^{-3}$$

DM field coherence time
$$\sim \frac{10^6}{m_{dm}}$$

Dark matter may be a classical, oscillating field

$$\phi(t) = \phi_0 \cos(m_{\rm dm} t)$$

DM field oscillates within each bunch.

DM field oscillates faster than the SM precession. Signal is suppressed and mimics known systematics.

Dark matter may be a classical, oscillating field

$$\phi(t) = \phi_0 \cos(m_{\rm dm} t)$$

Focus of this work.

Spin Precession in a Storage Ring

Lab Frame

Spin Precession in a Storage Ring

Lab Frame

Tracking Muon Spins

Asymmetric Muon Decay

Positrons are preferentially emitted along the direction of the anti-muon spin.

Polarized muon bunch

Positron flux

Tracking Muon Spins

Energy is a proxy for direction

The most energetic positrons are those emitted along the muon's momentum:

Polarized muon bunch

Positron flux

Few high energy positrons

Tracking Muon Spins

Energy is a proxy for direction

The most energetic positrons are those emitted along the muon's momentum:

Polarized muon bunch

Positron flux

Many high energy positrons

g-2 Measurement: Positron Count

Asymmetric muon decay

Construct positron counting observables that oscillate at $\,\omega_a$

g-2 count:

Number of positrons in the highest-energy bin:

$$N_T \propto [1 + A \cos(\omega_a t)]$$

[Miller et al, 0703049]

EDM Measurement: Positron Count

Asymmetric muon decay

Construct positron counting observables that oscillate at ω_a :

Vertical Count

Excess of upwardmoving positrons:

$$\Delta N_B \propto \frac{\omega_{\perp}}{\omega_a} \sin \omega_a$$

[Bennett et al, 0811.1207]

EDM Stack and Fit

Fit stacked vertical count to: $A \sin (\omega_a t + \phi_a)$

Frozen Spin

A dedicated EDM search would do best by minimizing $\omega_{
m sm}$.

Choose laboratory EM fields to set $\omega_{\rm sm}=0$.

[Adelmann et al, 0606034]

$$\Delta N_B \propto S_0 \sin{(\omega_{\perp} t)}$$

Frequency Modulation

Momentum count has frequency modulation:

$$\vec{S} \cdot \vec{p} = S_0 \cos \left[\omega_{\rm sm} t + \frac{\omega_{\rm dm}}{m_{\phi}} \sin \left(m_{\phi} t \right) \right]$$

Gradual drift in the local precession frequency

DM Yukawa coupling

$$\vec{\omega}_a$$
 \odot \vec{p} (Rotated Rest Frame) \vec{p}

DM Yukawa coupling

$$\vec{\omega}_a$$
 \odot \vec{p} $0 < t < \frac{\pi}{m_\phi}$ (Rotated Rest Frame)

DM Yukawa coupling

$$ec{\omega}_a$$
 \odot $ec{p}$ $0 < t < rac{\pi}{m_\phi}$ (Rotated Rest Frame)

DM Yukawa coupling

Stacking of the FM DM Signal

Could FM precession be hiding in the g-2 data?

Yes - stacking averages away the modulation.

The stacked data is a sum of cosines at different frequencies:

$$S_p \sim \left(\text{oscillation at }\langle \omega(t)\rangle\right) \cdot \left(\text{envelope with scale }\sigma_{\omega(t)}\right)$$

Small deviation from the SM value

$$\langle \omega(t) \rangle \sim \omega_{\rm sm} + \omega_{\rm dm} \frac{1}{\sqrt{N_{\rm bunches}}}$$

Envelop is nearly flat over each bunch

$$\sim (1 - \omega_{\rm dm}^2 t^2)$$

Constraints from Stacking the FM DM Signal

The envelope is detectable as a failure to fit the momentum count as a pure oscillation.

A decaying envelope is already present due to muon losses, modeled and empirically fit to be an $\approx 10\%$ decay

Allowed:
$$(\omega_{dm}T_{\mathrm{bunch}})^2 < 10\%$$
 [Bennet et al, 0602035]

If the envelop is ignorable, it follows that the stacked frequency is the discrete mean of the individual bunch frequencies

$$\omega_{\text{stack}} = \omega_{sm} + \omega_{dm} \left(\frac{1}{N_{\text{bunches}}} \Sigma_{t_i} \cos(m_{\phi} t_i) \right)$$

$$\Rightarrow \left| \omega_{\text{stack}} - \omega_{sm} \right| \sim \frac{\omega_{dm}}{m T_{\text{run}}} \quad \left[\text{if } m \lesssim \frac{N_{\text{bunches}}}{T_{\text{run}}} \right]$$

Deviation must be less than (or equal!) the observed frequency.

Time-Resolved Amplitude Tracking

Can we reveal AM in the vertical counts, analogous to the FM precession in the momentum counts?

Time-Resolved Amplitude Tracking

Fourier transform of vertical amplitude:

(Assuming a uniform spacing of bunches)

Yukawa Coupling: Static Limit

For sufficiently small m_ϕ , the DM background provides a static contribution to m_μ which will be included in the computation of ω_{sm} – no anomaly is observed.

We then constrain the linear drift of m_{μ} between (g-2) experiments and the previous determination of m_{μ} .

In practice, use the magnetic moment ratio μ_μ/μ_p determined from the hyperfine splitting of muonium instead of m_μ [Liu et al, 1999]

$$|\omega_{stack} - \omega_{sm}| \sim \Delta T_{m_{\mu}} \, \partial_t \omega_{dm}$$
 [if Index Index

$$\left[ext{if } m_{\phi} \lesssim rac{1}{T_{ ext{total}}}
ight]$$

Total span of (g-2) experiment

Yukawa: Loop Effects

$$\mathcal{L} \supset y \, \phi \bar{\mu} \mu$$

A few of the more egregious examples:

Generates couplings to electrons, nucleons and photons which are highly constrained by atomic clocks and EP tests.

[Arvanitaki et al, 1405.2925]

Induced $\phi^2 \bar{n} n$ produces a matter-dependent potential for the DM, may screen it from terrestrial experiments.

Detection Reach for DM-Muon Yukawa

A Muon Electric Dipole Moment

A moving electric dipole will precess in a magnetic field. A muon EDM contributes to $\vec{\omega}_a$ as:

$$\vec{\omega}_{\text{EDM}} = -2 \, d_e \left(\vec{v} \times \vec{B} \right)$$

This is orthogonal to the magnetic field!

A Muon Electric Dipole Moment

A moving electric dipole will precess in a magnetic field. A muon EDM contributes to $\vec{\omega}_a$ as:

$$\vec{\omega}_{\text{EDM}} = -2 d_e \left(\vec{v} \times \vec{B} \right)$$

This is orthogonal to the magnetic field!

(Rotated Rest Frame) $\vec{B} = \vec{S} \vec{p} \text{ Orbital Plane}$

A Muon Electric Dipole Moment

A moving electric dipole will precess in a magnetic field. A muon EDM contributes to $\vec{\omega}_a$ as:

$$\vec{\omega}_{\text{EDM}} = -2 \, d_e \left(\vec{v} \times \vec{B} \right)$$

This is orthogonal to the magnetic field!

(Rotated Rest Frame) $\theta \approx \frac{\omega_{\rm edm}}{\omega_{\rm sm}} \qquad \vec{S} \qquad \vec{p} \qquad \text{Orbital Plane}$

Vertical Count

Detecting an EDM requires measuring upward vs downward moving positrons.

The momentum count is blind to this.

Positrons mostly upward

Positrons mostly downward

Measure the difference ΔN_B in the number of upward versus downward moving positrons:

$$\Delta N_B \propto \vec{S} \cdot \vec{B}$$

Vertical Count

$$\vec{\omega}_{\text{EDM}} = -2 \, d_e \left(\vec{v} \times \vec{B} \right)$$

The momentum and vertical components of spin are:

$$\vec{S} \cdot \hat{p} = S_0 \cos(\omega_a t)$$

$$\vec{S} \cdot \hat{B} = S_0 \frac{\omega_{\text{edm}}}{\omega_{\text{sm}}} \sin(\omega_a t)$$

Phase shift between momentum and vertical counts.

$$\omega_a = \sqrt{\omega_{\rm sm}^2 + \omega_{\rm edm}^2}$$

Net increase in momentum count frequency – mimics anomaly.

Stack and Fit

BNL stacked momentum and vertical counts:

A DM EDM Signal

Precession trajectory (quasi-static limit):

$$S_{p} = S_{0} \underline{\cos} \left[\left(\omega_{sm} + \frac{\omega_{dm}^{2}}{4\omega_{sm}} \right) t + \frac{\omega_{dm}^{2}}{8\omega_{sm}} \sin(2m_{a}t) \right]$$

$$S_{B} = S_{0} \frac{\omega_{dm}}{\omega_{sm}} \cos(m_{a}t) \underline{\sin} \left[\left(\omega_{sm} + \frac{\omega_{dm}^{2}}{4\omega_{sm}} \right) t + \frac{\omega_{dm}^{2}}{8\omega_{sm}} \sin(2m_{a}t) \right]$$

AC Amplitude Modulation

Fixed phase shift between counts

Immediate constraints (or explanation):

Static FM is a ρ_{dm} -dependent apparent contribution to a_{μ} .

AM of vertical count will average away in the stacked EDM measurement – we may place constraint from the residual of that averaging.

Mass Tuning: Muon-ALP EDM Coupling

Limits on ALP DM-Muon EDM Coupling

Frozen Spin

A dedicated EDM search would do best by minimizing $\omega_{
m sm}$.

Choose laboratory EM fields to set $\omega_{\rm sm}=0$.

[Adelmann et al, 0606034]

Frozen Spin

A dedicated EDM search would do best by minimizing $\omega_{
m sm}$.

Choose laboratory EM fields to set $\omega_{\rm sm}=0$.

[Adelmann et al, 0606034]

(Rotated Rest Frame)

Vertical Count: $\vec{S} \cdot \hat{B} = S_0 \cos{(\omega_{\rm edm} t)} \approx S_0 \, \omega_{\rm edm} t$