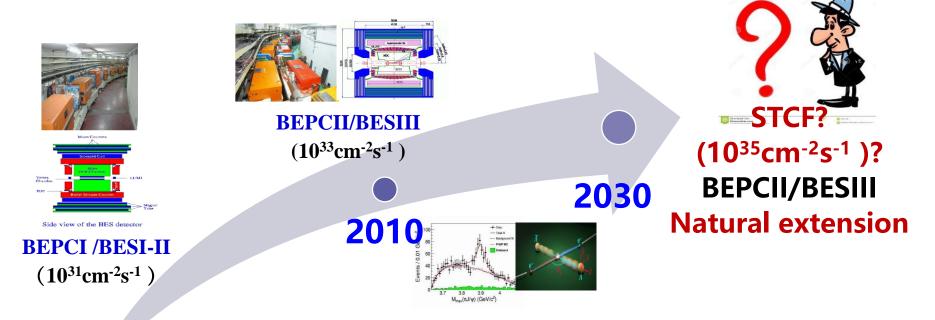
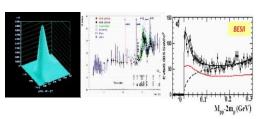


Haiping Peng (On behalf of STCF working group)
State Key Laboratory of Particle Detection and Electronics
University of Science and Technology of China

Physics at Tau-Charm Region


- Hadron form factors
- Y(2175) resonance
- Mutltiquark states with s quark,
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton


- XYZ particles
- Physics with D mesons
- fD and fDs
- D0-D0 mixing
- Charm baryons
- Rich of physics program, unique for physics with c quark and τ lepton
- important playground for study of nature of non-pQCD, exotic hadrons, flavor physics and search for new physics.

Tau-Charm Factory in China

30 yields history, Successful and fruitful physics results

1990

Challenge of BEPCII/BESIII experiment:

- Successful operation for 13 years, but limited potential for further upgrade
- BEPCII/BESIII lifetime is less than 10 years.
- Some key scientific questions require higher luminosity and more wider CME.

STCF in China

- CME : 2-7 GeV
- Peaking $\mathcal{L} : > 0.5 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
- Potential to further improve the lumi and realize polarized beam
- Double storage ring: ~800 m, injection: ~ 300m
- BESIII-Like detector
- Cost 4.5B RMB

Project progress and plan

Workshop for acc. based high energy physics development strategy

Super Charm-tau Factory

Zhengguo Zhao
On behalf of ???

2011/12 Sanya

2011•
First proposed

2015

Xiangshan

Science

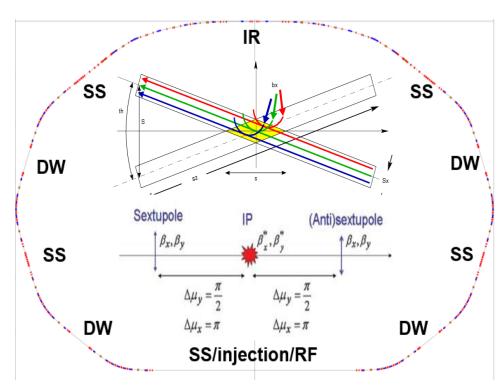
Conference

中国科学技术大学"双一流"重点建设项目"超级局"集(T-C)装置领先研究"论证意见 2018年3月12日,中国科学组长大学市"成一流"重点 建设项目""是从局景景度(Super Tau-chamn Facility、STCF) 的现在形式"进行下途往。会议成立下途经专系资金(名 年期的,所以不归自意大处规定计分明已报。经以其 讨论与原则,形成社总是地方": 1. 括于物理等(也称高能物理)是研究化于分配实际 上物学的基本的。相关中国以来自然是是是是理论的目

2018

USTC double firstclass key projects Several domestic and international workshop

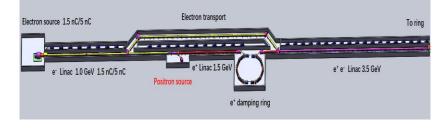
2021
onceptu


Key technology R&D

Conceptual design report

	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031-40	2041-43
CDR															
TDR															
Construction															
Commission															
Upgrade															

Accelerator Conceptual Design


Interaction region:

Large Piwinski-Angle Collision + Crabbed Waist

Linac Injector:

- No booster, full energy injection (1-3.5 GeV)
- e⁻, a (polarized) e- source with high current, accelerated
- e+, a convertor, a linac and a damping ring, accelerated

Parameters	Unit	Value
Circumference	m	574.78
		0.9
Distance from final defocusing quadrupole to IP	m	
Optimized energy	GeV	2.0
Total beam current	Α	2
Horizontal/Vertical beta @ IP	m	0.09/0.0006
Total crossing angle (2θ)	mrad	60
Piwinski angle (φ)	rad	18.9
Beam-beam tune shift (ξ_x/ξ_y)	_	0.0038/0.0835
Coupling ratio	_	0.5%
Natural chromaticities (C_x/C_y)	_	-87/-513
Horizontal emittance (ϵ_x) without/with IBS	nmrad	2.76/4.17
Horizontal beam size @ IP without/with IBS	μm	15.77/19.37
Vertical beam size @ IP without/with IBS	μm	0.091/0.117
Energy spread $(\frac{\sigma_{AE}}{E})$ without/with IBS	×10 ⁻⁴	5.3/7.2
Momentum compaction factor	_	7.2×10^{-4}
RF frequency	MHz	499.67268
RF voltage	MV	1.2
Harmonic number	_	958
Bunch length (σ_z)	mm	12.2
Particle number per bunch (N_b)	_	5.0×10^{10}
Energy loss per turn	MeV	0.1315
Synchrotron tune (v_s)	_	0.00388
Damping times $(\tau_x/\tau_y/\tau_s)$	ms	58.51/58.33/29.12
Peak luminosity	$cm^{-2}s^{-1}$	1.2×10^{35}
Touschek lifetime	s	35

STCF Detector

A BESIII-like detector with large solid angle coverage, excellent momentum and energy resolution, superior PID capability, and much higher event rate and radiation hardness

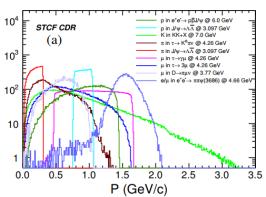
Inner Tracker

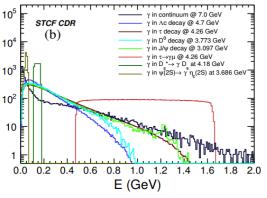
- $\sim 0.15\% X_0 / layer$
- $\sigma_{xy} \sim 50 \ \mu m$

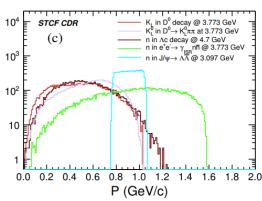
Out Tracker

- σ_{xy} ~ 130 μ m, σ_p/p ~ 0.5%@1 GeV/c
- dE/dx ~ 6%

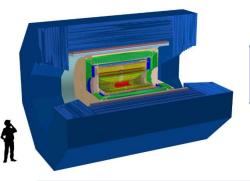
PID system

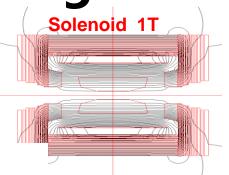

• $\pi/K(K/p)$ 3-4 σ separation up to 2 GeV/c


Electromagnetic Calorimeter

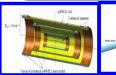

- Range: 0.02 3 GeV
- Resolution (1 GeV): 2.5% (barrel) and 4% (endcap)

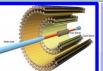
Muon system


π suppression power: >10 and lower to 0.4 GeV/c



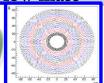
Detector Conceptual Design

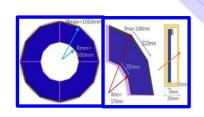


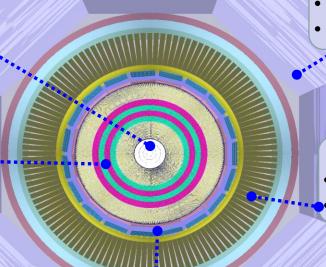

Micro/Fast Readout Electronics
High capability of Trigger, DAQ, Storage

Inner Track

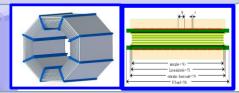
- Monolithic active Pixel sensor
- Low mass μ RWELL MPGD

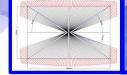


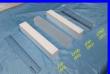



Outer Track

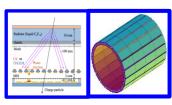
- Main Drift Chamber (MDC)
- Ultra-low mass




Muon detector


- RPC-plastic scintillator mixture
- High neutral hadron ID efficiency

EM Calorimeter


- pCsI crystal based : fast
- High energy and timing resolution

Particle Identification

- MPGD-based RICH (barrel)
- High-precision timing DIRC (Endcap)

Data Samples

1 ab⁻¹ data expected per year

Table 1: The expected numbers of events per year at different energy points at STCF

Table 1:		imbers of events per	year at diffe	rent energy points	s at STCF
CME (GeV)	Lumi (ab ⁻¹)	samples	σ(nb)	No. of Events	remark
3.097	1	J/ψ	3400	3.4×10^{12}	
3.670	1	$\tau^+\tau^-$	2.4	2.4×10^{9}	
		ψ(3686)	640	6.4×10^{11}	
3.686	1	$\tau^+\tau^-$	2.5	2.5×10^{9}	
		$\psi(3686) \rightarrow \tau^+\tau^-$		2.0×10^{9}	
		$D^0ar{D}^0$	3.6	3.6×10^{9}	
		$D^+\bar{D}^-$	2.8	2.8×10^{9}	
3.770	1	$D^0ar{D}^0$		7.9×10^{8}	Single Tag
		$D^+ar{D}^-$		5.5×10^{8}	Single Tag
		$ au^+ au^-$	2.9	2.9×10^{9}	
		$\gamma D^0 ar{D}^0$	0.40	4.0×10^{6}	$CP_{D^0\bar{D}^0} = +1$
4.040	1	$\pi^0 D^0 ar{D}^0$	0.40	4.0×10^{6}	$CP_{D^0\bar{D}^0} = -1$
4.040	1	$D_s^+D_s^-$	0.20	2.0×10^{8}	
		$\tau^+\tau^-$	3.5	3.5×10^{9}	
		$D_s^{+*}D_s^{-}$ +c.c.	0.90	9.0×10^{8}	
4.180	1	$D_s^{+*}D_s^{-}$ +c.c.		1.3×10^{8}	Single Tag
		$\tau^+\tau^-$	3.6	3.6×10^{9}	
		$J/\psi\pi^{+}\pi^{-}$	0.085	8.5×10^{7}	
4.230	1	$\tau^+\tau^-$	3.6	3.6×10^{9}	
		$\gamma X(3872)$			
4.360	1	$\psi(3686)\pi^{+}\pi^{-}$	0.058	5.8×10^{7}	
4.300	1	$\tau^+\tau^-$	3.5	3.5×10^{9}	
4.420	1	$\psi(3686)\pi^{+}\pi^{-}$	0.040	4.0×10^{7}	
4.420	1	$ au^+ au^-$	3.5	3.5×10^{9}	
4.630		$\psi(3686)\pi^{+}\pi^{-}$	0.033	3.3×10^{7}	
4.030	1	$\Lambda_car{\Lambda}_c$	0.56	5.6×10^{8}	
	1	$\Lambda_c \bar{\Lambda}_c$		6.4×10^{7}	Single Tag
		$ au^+ au^-$	3.4	3.4×10^{9}	
4.0-7.0	3	300 points	scan with 1	0 MeV step, 1 fb	¹ /point
> 5	2-7	several ab-1 high	energy data,	details dependent	on scan results

Hyperon Factory

Decay mode	$\mathcal{B}(\text{units }10^{-4})$	Angular distribution parameter α_{ψ}	Detection efficiency	No. events expected at STCF
$J/\psi \to \Lambda \bar{\Lambda}$	$19.43 \pm 0.03 \pm 0.33$	0.469 ± 0.026	40%	1100×10^{6}
$\psi(2S) \to \Lambda \bar{\Lambda}$	$3.97 \pm 0.02 \pm 0.12$	0.824 ± 0.074	40%	130×10^{6}
$J/\psi o \Xi^0 \bar{\Xi}^0$	11.65 ± 0.04	0.66 ± 0.03	14%	230×10^{6}
$\psi(2S) \to \Xi^0 \bar{\Xi}^0$	2.73 ± 0.03	0.65 ± 0.09	14%	32×10^{6}
$J/\psi o \Xi^-\bar{\Xi}^+$	10.40 ± 0.06	0.58 ± 0.04	19%	270×10^{6}
$\psi(2S) \to \Xi^-\bar{\Xi}^+$	2.78 ± 0.05	0.91 ± 0.13	19%	42×10^{6}

Light meson Factory

$\mathcal{B}(\times 10^{-4})$ [2]	η/η' events
52.1 ± 1.7	1.8×10^{10}
11.08 ± 0.27	3.7×10^{9}
7.4 ± 0.8	2.5×10^{9}
4.6 ± 0.5	1.6×10^{9}
	52.1 ± 1.7 11.08 ± 0.27 7.4 ± 0.8

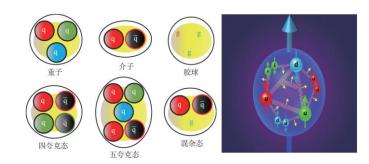
XYZ Factory

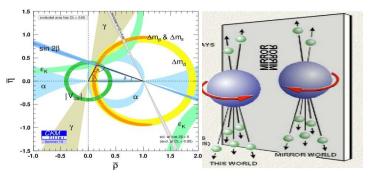
XYZ	Y(4260)	$Z_c(3900)$	$Z_c(4020)$	X(3872)
No. of events	10^{10}	10 ⁹	10 ⁹	5×10^{6}

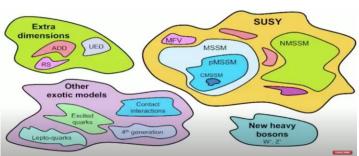
- Belle-II: more statistics (50/ab) has
- LHCb: much more statistics, huge bkg
- STCF: high detection efficiency, excellent resolution, kinematic constraining, low background, threshold production

Highlighted physics

QCD and Hadronic Physics

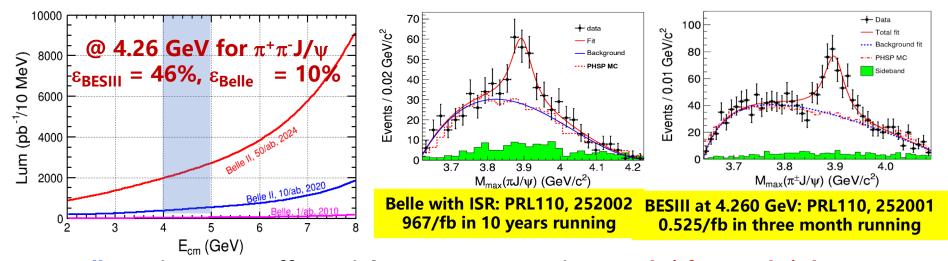

- Exotic states and hadron spectroscopy
- Hadron structures
- Precision test of SM parameters


Flavor Physics and CP violation


- CKM matrix, $D^0 \overline{D}{}^0$ mixing
- CP violation in lepton, hyperon, charm

New Physics Search

- Rare/Forbidden
- Universality test
- Dark particle search



Several benchmark processes analyses have been performed to optimize the detector design, and obtain potential sensitivities

Charmonium(Like) Spectroscopy

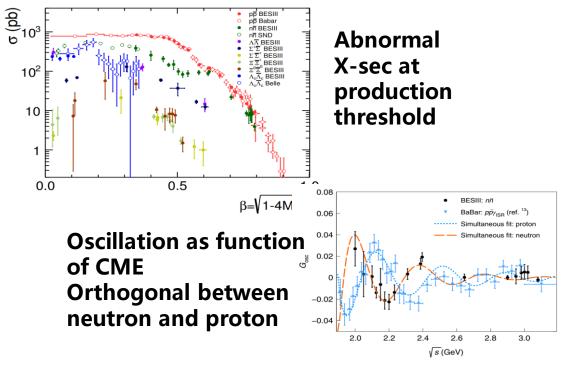
platform to explore non-pQCD, Fruitful results in past decade, a new territory to study exotic hadrons, but controversy

- Belle-II: integrate eff. Lumi. between 4-5 GeV is 0.23 ab-1 for 50 ab-1 data
- STCF: scan in 4-5 GeV, 10 MeV/step, 10 fb⁻¹/point/year, $5 \times Belle-II$ (50 ab⁻¹)
- STCF: much higher efficiency and low background than Belle-II

STCF: XYZ Factory

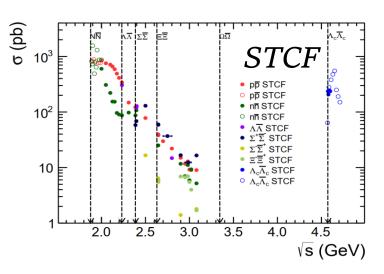
XYZ	Y(4260)	$Z_c(3900)$	$Z_c(4020)$	X(3872)
No. of events	10^{10}	10 ⁹	10 ⁹	5×10^{6}

Large statistics and much wider CME data provide opportunity to perform precise analysis and to pine down the nature of Charmomium-like states


Fengkun Guo's Snowmass talk

https://indico.fnal.gov/event/51844/contributions/240619/attachments/155336/202232/Snowmass_RF7_STCF_FKGuo.pdf ¹¹

Electromagnetic Form Factors


Fundamental properties of the nucleon, connected to charge and magnetization distributions, crucial testing ground for models of the nucleon internal structure

STCF unique features:

- Threshold Production
- Low background
- Almost all baryons
- Incomparable precision

STCF provide opportunities for systematical and precise measurements, and to understand the nature the nucleons

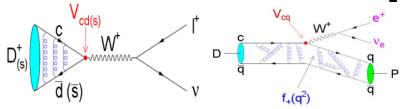
QCD and Hadronic Physics

Physics at STCF	Benchmark Processes	Key Parameters*
XYZ properties	$e^+e^- \rightarrow Y \rightarrow \gamma X, \eta X, \phi X$ $e^+e^- \rightarrow Y \rightarrow \pi Z_c, KZ_{cs}$	$N_{Y(4260)/Z_c/X(3872)} \sim 10^{10}/10^9/10^6$
Pentaquarks, Di-charmonium	$e^+e^- o J/\psi p \bar{p}, \Lambda_c \overline{D} \bar{p}, \Sigma_c \overline{D} \bar{p}$ $e^+e^- o J/\psi \eta_c, J/\psi h_c$	$\sigma(e^+e^- \to J/\psi p\bar{p})\sim 4 \text{ fb};$ $\sigma(e^+e^- \to J/\psi c\bar{c})\sim 10 \text{ fb}$ (prediction)
Hadron Spectroscopy	Excited $c\bar{c}$ and their transition, Charmed hadron spectroscopy, Light hadron spectroscopy	$N_{J/\psi/\psi(3686)/\Lambda_c} \sim 10^{12}/10^{11}/10^8$
Muon g-2	$e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}, \pi^{+}\pi^{-}\pi^{0}, K^{+}K^{-}$ $\gamma\gamma \rightarrow \pi^{0}, \eta^{(\prime)}, \pi^{+}\pi^{-}$	$\Delta a_{\mu}^{HVP} \ll 40 \times 10^{-11}$
R value, $ au$ mass	$e^+e^- \rightarrow inclusive$ $e^+e^- \rightarrow \tau^+\tau^-$	$\Delta m_{\tau} \sim 0.012 \text{ MeV}$ (with 1 month scan)
Fragmentation functions	$e^+e^- \to (\pi, K, p, \Lambda, D) + X$ $e^+e^- \to (\pi\pi, KK, \pi K) + X$	$\Delta A^{Collins} < 0.002$
Nucleon Form Factors	$e^+e^- \to B\bar{B}$ from threshold	$\delta R_{EM}{\sim}1\%$

^{*}Sensitivity estimated based on $\mathcal{L} = 1 \text{ ab}^{-1}$

A unique Charm factory

Low backgrounds and high efficiency; missing technique and absolute measurement; Quantum correlations and CP-tagging


STCF data/year : 4×10^9 pairs of $D^{\pm,0}$, 10^8 D_s and Λ_c pairs

Highlighted Physics programs

- Precise measurement of (semi-)leptonic decay (f_D, f_{Ds}, CKM)
- $D^0 \overline{D}^0$ mixing, CPV
- Strong phase, decay parameters...
- Rear decay (FCNC, LFV, LNV....),
- Charmed baryons (JPC, Decay modes, absolute BF)
- Excited charmed meson and baryon states: like D_J , D_{sJ} , Λ_c^* (mass, width, J^{PC} , decay modes)
- Light meson and hyperon spectroscopy studied in charmed hadron decays

Xiaorui Lyu's https://indico.fnal.gov/event/51844/contributions/240647

Charm meson Leptonic Decays

Excellent platform for CKM elements and decay constants and universality test

	BESIII	STCF	Belle II	-
Luminosity	$2.93 \; \mathrm{fb^{-1}} \; \mathrm{at} \; 3.773 \; \mathrm{GeV}$	$1 {\rm ~ab^{-1}} {\rm ~at} {\rm ~3.773} {\rm ~GeV}$	$50~{ m ab}^{-1}~{ m at}~\Upsilon(nS)$	•
$\mathcal{B}(D^+ o \mu^+ \nu_\mu)$	$5.1\%_{\text{stat}} \ 1.6\%_{\text{syst}} \ [6]$	$0.28\%_{ m stat}$	_	•
$f_{D^+} \; ({ m MeV})$	$2.6\%_{\rm stat} 0.9\%_{\rm syst} [6]$	$0.15\%_{ m stat}$		OCD + 0 20/
$ V_{cd} $	$2.6\%_{\text{stat}} 1.0\%_{\text{syst}}^{*} [6]$	$0.15\%_{\mathrm{stat}}$		QCD: 0.2%
$\mathcal{B}(D^+ o au^+ u_ au)$	$20\%_{\rm stat} 10\%_{\rm syst} [7]$	$0.41\%_{ m stat}$	- (0.1	% expected)
$\frac{\mathcal{B}(D^+ \to \tau^+ \nu_\tau)}{\mathcal{B}(D^+ \to \mu^+ \nu_\mu)}$	$21\%_{\text{stat}} 13\%_{\text{syst}} [7]$	$0.50\%_{\mathrm{stat}}$	-	
Luminosity	$3.2 \; {\rm fb^{-1}} \; {\rm at} \; 4.178 \; {\rm GeV}$	$1 \text{ ab}^{-1} \text{ at } 4.009 \text{ GeV}$	$50 \text{ ab}^{-1} \text{ at } \Upsilon(nS)$	•
$\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu)$	$2.8\%_{\text{stat}} 2.7\%_{\text{syst}} [8]$	$0.30\%_{\mathrm{stat}}$	$0.8\%_{\mathrm{stat}}1.8\%_{\mathrm{syst}}$	
$f_{D_s^+} \; (\mathrm{MeV})$	$1.5\%_{\text{stat}} \ 1.6\%_{\text{syst}} \ [8]$	$0.15\%_{ m stat}$	_	
$ V_{cs} $	$1.5\%_{\text{stat}} \ 1.6\%_{\text{syst}} \ [8]$	$0.15\%_{ m stat}$		QCD : 0.2%
$f_{D_s^+}/f_{D^+}$	$3.0\%_{\text{stat}} 1.5\%_{\text{syst}} [8]$	$0.21\%_{\mathrm{stat}}$	- \ (0	10/ ovpostod)
$\mathcal{B}(D_s^+ o au^+ u_ au)$	$2.2\%_{\mathrm{stat}}2.6\%_{\mathrm{syst}}^{\dagger}$	$0.24\%_{ m stat}$	$0.6\%_{\rm stat}2.7\%_{\rm syst}$	1% expected)
$f_{D_s^+} \; ({ m MeV})$	$1.1\%_{\mathrm{stat}} 1.5\%_{\mathrm{syst}}^{\dagger}$	$0.11\%_{ m stat}$	_	
$ V_{cs} $	$1.1\%_{\mathrm{stat}} 1.5\%_{\mathrm{syst}}^{\dagger}$	$0.11\%_{\mathrm{stat}}$		QCD : 0.2%
$\overline{f}_{D_s^+}^{\mu\& au} \; ({ m MeV})$	$0.9\%_{\mathrm{stat}}1.0\%_{\mathrm{syst}}^{\dagger}$	$0.09\%_{ m stat}$	$0.3\%_{\mathrm{stat}}1.0\%_{\mathrm{sym}}$	1% expected)
$rac{\overline{f}_{D_s^+}^{\mu\& au}\left(\mathrm{MeV} ight)}{ \overline{V}_{cs}^{\mu\& au} }$	$0.9\%_{\mathrm{stat}}1.0\%_{\mathrm{syst}}^{\dagger}$	$0.09\%_{\mathrm{stat}}$		170 expected)
$\frac{\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau})}{\mathcal{B}(D_s^+ \to \mu^+ \nu_{\mu})}$	$3.6\%_{\mathrm{stat}}3.0\%_{\mathrm{syst}}^{\dagger}$	$0.38\%_{ m stat}$	$0.9\%_{\mathrm{stat}}3.2\%_{\mathrm{syst}}$:

^{*} assuming Belle II improved systematics by a factor 2

D^0 - \overline{D}^0 mixing and CPV

STCF provide an unique place for the study of $D^0 - \overline{D}{}^0$ mixing and CPV by means of quantum coherence of D^0 and $\overline{D}{}^0$ produced through

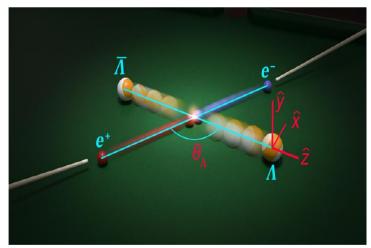
$$\psi(3770) \to (D^0\bar{D}^0)_{\mathrm{CP}=-} \text{ or } \psi(4140) \to D^0\bar{D}^{*0} \to \pi^0(D^0\bar{D}^0)_{\mathrm{CP}=-} \text{ or } \gamma(D^0\bar{D}^0)_{\mathrm{CP}=+}$$

as well as incoherent flavor specific D^0 samples: $D^{*+} o D^0 \pi^+$

- Mixing rate $R_M = \frac{x^2 + y^2}{2} \sim 10^{-5}$ with 1 ab⁻¹ data at 3.773 GeV via same charged final states $(K^{\pm}\pi^{\mp})(K^{\pm}\pi^{\mp})$ or $(K^{\pm}l^{\mp}v)(K^{\pm}l^{\mp}v)$
- $\Delta A_{CP} \sim 10^{-3}$ for KK and $\pi\pi$ channels

	1/ab @4009 MeV (only QC QC+incoherent) (very preliminary estimation)		BELLEII(50/ab) [PTEP2019,123C01]	LHCb(50/fb) (SL Prompt) [arXiv:1808.08865]	
<i>x</i> (%)	0.036	0.035	0.03	0.024	0.012
<i>y</i> (%)	0.023	0.023	0.02	0.019	0.013
r_{CP}	0.017	0.013	0.022	0.024	0.011
$\alpha_{CP}(^{\circ})$	1.3	1.0	1.5	1.7	0.48

- The only QC results: contains $D^0 \to K_S \pi \pi$, $D^0 \to K^- \pi^+ \pi^0$ and general CP tag decay channels; needs to be tuned
- The QC+incoherent results: combines coherent and incoherent D^0 meson samples
- The BELLE II and LHCb results only contain incoherent $D^0 \to K_S \pi \pi$ channel

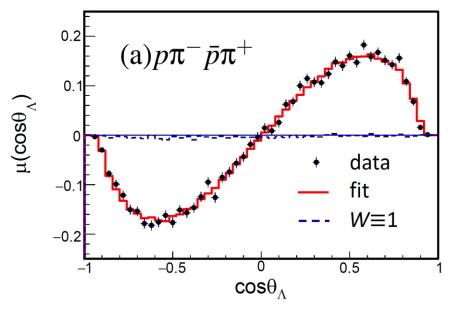

Precision Study of Charm Baryon

Era of precision study of the charmed baryon (Λ_c , Ξ_c and Ω_c) decays to help developing more reliable QCD-derived models in charm sector

- Hadronic decays:
 - to explore as-yet-unmeasured channels and understand full picture of intermediate structures in B_c decays, esp., those with neutron/ Σ/Ξ
- Semi-leptonic decays: to test LQCD calculations and LFU
- CPV in charmed baryon:
 - BP and BV two-body decay asymmetry, charge-dependent rate of SCS
- Charm-flavor-conserving nonleptonic decays: $\Xi_c \to \Lambda_c^+ \pi^-$, $\Omega_c^0 \to \Xi_c^- \pi^-$
- Electro-weak radiative decays : $\Sigma_c^+ \to \Lambda_c^+ \gamma$, $\Lambda_c^+ \to \Sigma \gamma$, $p\gamma$, $\Xi_c^{+/0} \to \Sigma^{+/0} \gamma$
- Rare decays: LFV, BNV, FCNC

STCF will provide very precise measurements of their overall decays, up to the unprecedented level of 10⁻⁶ ~10⁻⁷

Polarization of hyperons and CPV



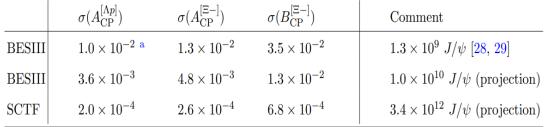
Nature Phys. 15, 631–634 (2019)

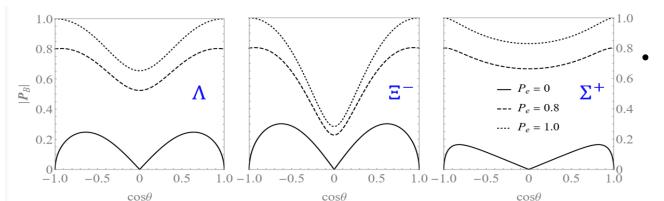
1.31 B J/ ψ events Quantum correlation in Λ pair

Parameters	This work	Previous results
α_{ψ}	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027 ¹⁴
$\Delta\Phi$	$(42.4 \pm 0.6 \pm 0.5)^{\circ}$	_
α_{-}	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013 ¹⁶
$lpha_+$	$-0.758 \pm 0.010 \pm 0.007$	-0.71 ± 0.08 ¹⁶
$ar{lpha}_0$	$-0.692 \pm 0.016 \pm 0.006$	_
A_{CP}	$-0.006 \pm 0.012 \pm 0.007$	0.006 ± 0.021 ¹⁶
$\bar{\alpha}_0/\alpha_+$	$0.913 \pm 0.028 \pm 0.012$	-

2% level sensitivity for CPV test

SM prediction: 10⁻⁴~10⁻⁵


CP test
$$A_{CP} = \frac{\alpha_- + \alpha_+}{\alpha_- - \alpha_+}$$
 18


Polarization of hyperons and CPV

4 trillion J/ ψ events $\Rightarrow A_{CP} \sim 10^{-4}$

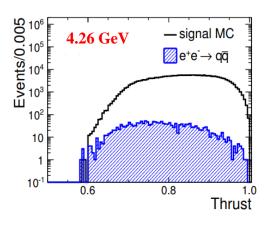
- Luminosity of STCF: × 100
- No polarized beams are needed
- Systematic is challenging

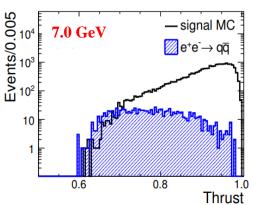
0.01 — + center value 1 a 1 a 2 a 3 a 3 a		-0.004	center value 1σ 1σ 3σ		
\$ -	+		•		
-0.01		-0.005			
-0.02 0.71 0.72	0.73 0.74 ΔΦ	-0.0055 0.777	0.7275 0.726	0 7285	0.729
J/ψ [28, 29] J/ψ (projection)	π •	● ② →		ted from S.Olsen 1.01021	
J/ψ (projection)	$A_{\mathrm{CP}}^D := \frac{\alpha_D + \alpha_D}{\alpha_D}$	$-\frac{\overline{\alpha}_D}{\overline{\alpha}_D}$ and	$B_{\mathrm{CP}}^D := \frac{1}{6}$	$\frac{\beta_D + \overline{\beta}_D}{\alpha_D - \overline{\alpha}_D}$,

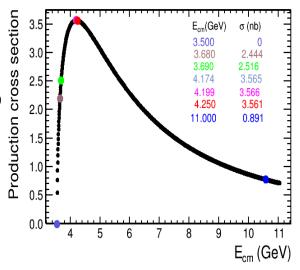
Magnitudes of the hyperon polarization versus e^- polarization

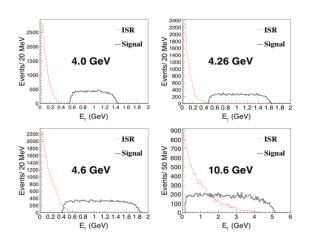
Flavor Physics and CPV

Physics at STCF	Benchmark Processes	Key Parameters*
CKM matrix	$D_{(s)}^+ \to l^+ \nu_l, D \to P l^+ \nu_l$	$\delta V_{cd/cs}{\sim}0.15\%;$ $\delta f_{D/D_s}{\sim}0.15\%$
γ/ϕ_3 measurement	$D^0 \to K_S \pi^+ \pi^-, K_S K^+ K^- \dots$	$\Delta(\cos\delta_{K\pi}) \sim 0.007;$ $\Delta(\delta_{K\pi}) \sim 2^{\circ}$
$D^0 - \overline{D}{}^0$ mixing	$\psi(3770) \to (D^0 \overline{D}{}^0)_{CP=-},$ $\psi(4140) \to \gamma(D^0 \overline{D}{}^0)_{CP=+}$	$\Delta x \sim 0.035\%;$ $\Delta y \sim 0.023\%$
Charm hadron decay	$D_{(s)}$, Λ_c^+ , Σ_c , Ξ_c , Ω_c decay	$N_{D/D_s/\Lambda_c} \sim 10^9 / 10^8 / 10^8$
γ polarization	$D^0 \to K_1 e^+ \nu_e$	$\Delta A'_{UD}{\sim}0.015$
CPV in Hyperons	$J/\psi o \Lambda \overline{\Lambda}, \Sigma \overline{\Sigma}, \Xi^{-} \overline{\Xi}^{-}, \Xi^{0} \overline{\Xi}^{0}$	$\Delta A_{\Lambda} \sim 10^{-4}$
CPV in $ au$	$\tau \to K_s \pi \nu$, EDM of τ , $\tau \to \pi/K \pi^0 \nu$ for polarized e^-	$\Delta A_{\tau \to K_s \pi \nu} \sim 10^{-3}$; $\Delta d_{\tau} \sim 5 \times 10^{-19}$ (e cm)
CPV in Charm	$D^0 \to K^+ K^- / \pi^+ \pi^-,$ $\Lambda_c \to p K^- \pi^+ \pi^0 \dots$	$\Delta A_D \sim 10^{-3}$; $\Delta A_{\Lambda_c} \sim 10^{-3}$

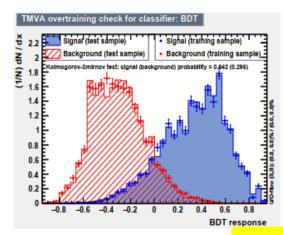

^{*}Sensitivity estimated based on $\mathcal{L} = 1 \text{ ab}^{-1}$

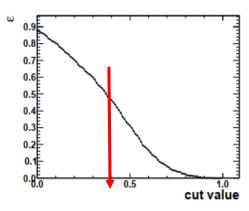

LFV in τ decays


LFV is a sensitive probe for NP, τ decays are an ideal processes for LFV

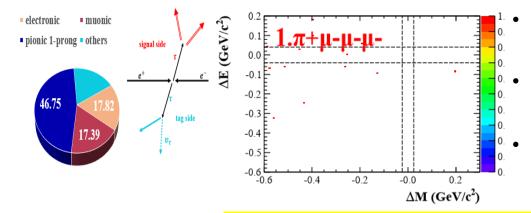

τ production at STCF:

- Peaking x-Sec in 4-5 GeV
- At 4.26 GeV, tau pair number/year: 3.5×10^9
- $e^+e^- o \gamma au^+ au^-$ is not the main background
- Improved π/μ mis-id rate at STCF
- Entangled topology of $e^+e^- o au^+ au^-$
- Large $e^+e^- \rightarrow q\overline{q}$ background at low c.m.e





LFV decay of $\tau \rightarrow \gamma \mu / l l l$



- Tag side: $au o ev\overline{v},\;\pi v,\;\pi\pi^0 v$ ($\mathcal{B}r=54\%$)
- Dominant background:

$$e^+e^- o\mu^+\mu^-$$
 and $e^+e^- o au^+ au^-$, $au^+ o\pi\pi^0 v$, $au^- o\mu v\overline{v}$

$$\mathcal{B}_{UL}^{90}(\tau \to \gamma \mu) < \frac{N_{UL}^{90}}{2\epsilon N_{\tau\tau}} \sim 1.2 \times 10^{-8} \, (1ab^{-1})$$

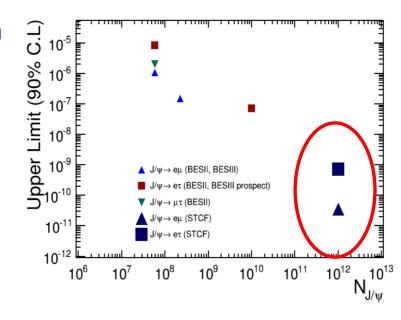
- Tag side: $au o ev\overline{v},\; \mu v\overline{v}\;,\; \pi v + n\pi^0$ ($\mathcal{B}r=82\%$)
- Almost background free, the

sensitivity : $\mathcal{B}_{UL}^{90} \ (au
ightarrow \mu \mu \mu) {\sim} 1/\mathcal{L}$

Best efficiency ($\tau \rightarrow \mu\mu\mu$): 22.5% (including tag branching fraction)

$$\mathcal{B}_{UL}^{90}(au o \mu\mu\mu) < \frac{N_{UL}^{90}}{2\varepsilon N_{ au au}} \sim 1.5 \times 10^{-9} (1ab^{-1})$$

LFV in J/ψ decays


 The cLFV decays of vector mesons V → l_il_j are also predicted in various of extension models of SM:

$$\mathcal{B}_{UL}^{90}(J/\psi \to e\mu) < 10^{-13}$$

 $\mathcal{B}_{UL}^{90}(J/\psi \to e(\mu)\tau) > 10^{-9}$

• Taking efficiency from BESIII, 1 **trillion** J/ψ result the upper limit to be:

$$\mathcal{B}_{UL}^{90}(J/\psi \to e\mu) < 3.6 \times 10^{-11}$$

 $\mathcal{B}_{UL}^{90}(J/\psi \to e\tau) > 7.1 \times 10^{-10}$

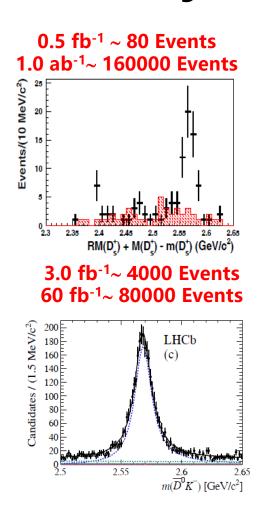
• The $\mathcal{B}_{UL}^{90}(J/\psi \to e\tau)$) can be further optimized with better PID.

Forbidden/Rare decay and NP

Physics at STCF	Benchmark Processes	Key Parameters* (U.L. at 90% C.L.)
LFV decays	$\tau \rightarrow \gamma l, lll, lP_1P_2$ $J/\psi \rightarrow ll', D^0 \rightarrow ll'(l' \neq l)$	$\mathcal{B}(\tau \to \gamma \mu/\mu\mu\mu) < 12/1.5 \times 10^{-9};$ $\mathcal{B}(J/\psi \to e\tau) < 0.71 \times 10^{-9}$
LNV, BNV	$D_{(s)}^+ \to l^+ l^+ X^-, J/\psi \to \Lambda_c e^-,$ $B \to \bar{B} \dots$	$\mathcal{B}(J/\psi\to\Lambda_c e^-)<10^{-11}$
Symmetry violation	$\eta^{(\prime)} \to ll \pi^0, \eta^\prime \to \eta ll \dots$	$\mathcal{B}(\eta' \to ll/\pi^0 ll) < 1.5/2.4 \times 10^{-10}$
FCNC	$D \rightarrow \gamma V, D^0 \rightarrow l^+ l^-, e^+ e^- \rightarrow D^*, \Sigma^+ \rightarrow p l^+ l^- \dots$	$\mathcal{B}(D^0 \to e^+ e^- X) < 10^{-8}$
Dark photon, millicharged	$e^+e^- \to (J/\psi) \to \gamma A'(\to l^+l^-)$ $e^+e^- \to \chi \bar{\chi} \gamma$	Mixing strength $\Delta \epsilon_{A'} \sim 10^{-4}$; $\Delta \epsilon_{\chi} \sim 10^{-4}$

^{*}Sensitivity estimated based on $\mathcal{L} = 1 \text{ ab}^{-1}$

Summary


- STCF is an unique facility in precision frontier
 - $E_{cm} = 2-7$ GeV, peaking $L > 0.5 \times 10^{35}$ cm⁻²s⁻¹, polarized beam (PhaseII)
 - Symmetric, double ring with circumference around 600~1000 m
- Important playground for studying non-pQCD, constrain EW theory and test the SM
- Complementary to Belle II and LHCb in understanding the QCD/EW models and searching for new physics
- STCF is one of the critical project for China HEP
- Great progress, have finished CDR, toward to technical R&D stage

Thanks for your attention!

Welcome to join the effort!

Features in Charm Hadron Decays

	STCF	Belle II	LHCb
Production yields	**	***	****
Background level	****	***	**
Systematic error	****	***	**
Completeness	****	***	*
(Semi)-Leptonic mode	****	***	**
Neutron/K _L mode	****	***	☆
Photon-involved	****	***	*
Absolute measurement	****	***	☆

- Most are precision measurements, which are mostly dominant by the systematic uncertainty
- STCF has overall advantages in several studies

Precision Measurements of CKM Elements

CKM matrix elements are fundamental SM parameters that describe the mixing of quark fields due to weak interaction.

- ☐ A precise test of EW theory
- **□** New physics beyond SM?

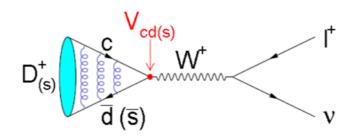
$$egin{pmatrix} d' \ s' \ b' \end{pmatrix} = egin{pmatrix} V_{ud}V_{us}V_{ub} \ V_{cd}V_{cb} \ V_{cb} \ V_{tb} \end{pmatrix} egin{pmatrix} d \ s \ V_{cd}V_{cb} \ V_{cb} \ V_{b} \end{pmatrix}$$

BESIII + B factories + LQCD

Three generations of quark?

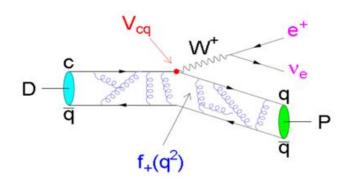
Unitary matrix?

Expected precision < 2% at BESIII


BESIII + B factories + LHCb + LQCD

A direct measurement of $V_{cd(s)}$ is one of the most important task in charm physics

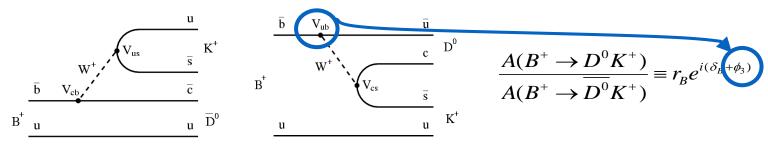
D_(s) (Semi-)Leptonic decay


Purely Leptonic:

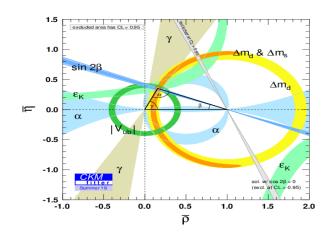
$$\Gamma(D_{(s)}^{+} \to \ell^{+} \nu_{\ell}) = \frac{G_{F}^{2} f_{D_{(s)}^{+}}^{2}}{8\pi} |V_{cd(s)}|^{2} m_{\ell}^{2} m_{D_{(s)}^{+}} \left(1 - \frac{m_{\ell}^{2}}{m_{D_{(s)}^{+}}^{2}}\right)^{2}$$

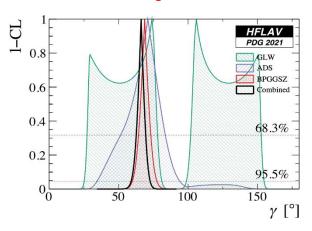
Semi-Leptonic:

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} = \frac{G_F^2}{2|4\pi^3|V_{cs(d)}|^2 p_{K(\pi)}^3 |f_+^{K(\pi)}(q^2)|^2}$$



Directly measurement : $|V_{cd(s)}| \times f_{D(s)}$ or $|V_{cd(s)}| \times FF$


- lacksquare Input $f_{D(s)}$ or $f^{k(\pi)}(0)$ from LQCD $\Rightarrow |V_{cd(s)}|$
- lacktriangled Input $|V_{cd(s)}|$ from a global fit $\Rightarrow f_{D(s)}$ or $f^{k(\pi)}(0)$
- \square Validate LQCD calculation of Input $f_{B(s)}$ and provide constrain of CKM-unitarity


Determination of γ/ϕ_3 angle

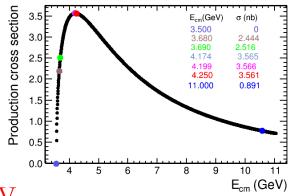
□ The cleanest way to extract γ is from B→DK decays:

- Interference between tree-level decays; theoretically clean
- current uncertainty $\sigma(\gamma) \sim 5^{\circ}$
- however, theoretical relative error $\sim 10^{-7}$ (very small!)
- \square Information of D decay strong phase is needed
 - Best way is to employ quantum coherence of DD production at threshold

Determination of γ/ϕ_3 angle

Runs	Collected / Expected	Year	γ/ϕ_3
	integrated luminosity	attained	sensitivity
LHCb Run-1 [7, 8 TeV]	$3~\mathrm{fb^{-1}}$	2012	8°
LHCb Run-2 $[13 \text{ TeV}]$	$5 \; { m fb^{-1}}$	2018	4°
Belle II Run	$50 { m ab^{-1}}$	2025	1.5°
LHCb upgrade I [14 TeV]	$50 \; {\rm fb^{-1}}$	2030	< 1°
LHCb upgrade II [14 TeV]	$300 \; {\rm fb^{-1}}$	(>)2035	< 0.4°

BESIII 20/fb: $\sigma(\gamma) \sim 0.4^{\circ}$


STCF is needed!

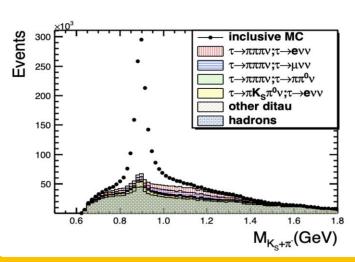
Three methods for exploiting interference (choice of D⁰ decay modes):

- Gronau, London, Wyler (GLW): Use CP eigenstates of $D^{(*)0}$ decay, e.g. $D^0 \rightarrow K_s \pi^0$, $D^0 \rightarrow \pi^+ \pi^-$
- Atwood, Dunietz, Soni (ADS): Use doubly Cabibbo-suppressed decays, e.g. $D^0 \rightarrow K^+\pi^-$
 - With 1 ab⁻¹ @ STCF : $\sigma(\cos\delta_{K\pi}) \sim 0.007$; $\sigma(\delta_{K\pi}) \sim 2^{\circ}$ → $\sigma(\gamma) < 0.5^{\circ}$
- □ Giri, Grossman, Soffer, Zupan (GGSZ): Use Dalitz plot analysis of 3-body D⁰ decays, e.g. $K_s \pi^+ \pi^-$; high statistics; need precise Dalitz model
 - STCF reduces the contribution of D Dalitz model to a level of $\sim 0.1^{\circ}$

τ Lepton Physics

- X sec grows from 0.1nb near threshold to 3.5 nb at 4.25 GeV
 - 1×10^8 tau pairs/year at threshold (0.1 nb)
 - 3.5×10⁹ tau pairs/year at 4.25 GeV (3.5 nb)
 - 10^{10} τ pairs per year for Belle II (1 nb)
- ☐ Highlighted Physics program
 - τ properties : m_{τ} , $(g-2)_{\tau}/2$
 - SM properties : universality test, Michel parameters, α_s , V_{us}
 - CPV test: $\tau^- \to K_S^0 \pi^- v_{\tau}$, T-odd triple product in polarization beam
 - LFV : $\tau \rightarrow \ell \gamma$, $\ell \ell \ell$, ℓh
- ☐ Comparison to Belle II
 - Threshold effect is important for controlling and understanding background
 - Relatively high efficiency
 - Longitudinal polarization of the initial beams will significantly increase sensitivity in searches for CPV in lepton decays.

CPV in τ decay

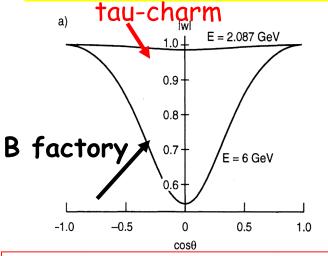

 \triangleright The CPV source in $K^0 - \overline{K}^0$ mixing produces a difference in tau decay rate

In Theory:
$$A_Q = \frac{B(\tau^+ \to K_S^0 \pi^+ \bar{\nu}_\tau) - B(\tau^- \to K_S^0 \pi^- \nu_\tau)}{B(\tau^+ \to K_S^0 \pi^+ \bar{\nu}_\tau) + B(\tau^- \to K_S^0 \pi^- \nu_\tau)} = (+0.36 \pm 0.01)\%$$

BaBar experiments: $A_{CP}(\tau^- \to K_S \pi^- \nu [\ge 0\pi^0]) = (-0.36 \pm 0.23 \pm 0.11)\%$

2.8σ away from the SM prediction

Theorist try to reconcile the deviation, but not coverage even NP included


The CPV sensitivity with 1ab-1 @ 4.26 GeV^[1]:

$$A_{STCF} \sim 9.7 \times 10^{-4}$$
 With 10 ab⁻¹ data:

$$A_{STCF} \sim 3.1 \times 10^{-4}$$

[1]. H. Sang, et al., Chin. Phys. C 45, no.5, 053003 (2021)

Possible choice to increase the Figure of merits: polarized beam

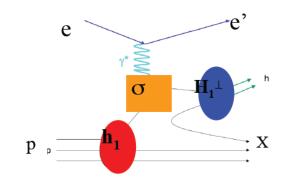
merit = luminosity $\times \bar{w}_Z \times$ total cross section \propto luminosity $\times (w_1 + w_2)$

$$\times \sqrt{1-a^2}a^2(1+2a) ,$$

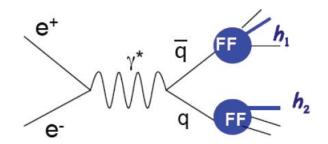
Collins Fragmentation Function (FF)

J. C. Collins, Nucl. Phys. B396, 161 (1993)

$$D_{hq^{\uparrow}}(z, P_{h\perp}) = D_1^q(z, P_{h\perp}^2) + H_1^{\perp q}(z, P_{h\perp}^2) \frac{(\hat{\mathbf{k}} \times \mathbf{P}_{h\perp}) \cdot \mathbf{S}_q}{zM_h},$$

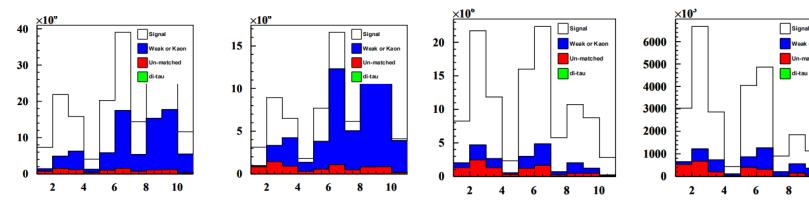

 D_1 : the un-polarized FF

 H_1 : Collins FF


- \rightarrow describes the fragmentation of a transversely polarized quark into a spin-less hadron h.
- \rightarrow depends on $z = 2E_h/\sqrt{s}$,
- \rightarrow leads to an azimuthal modulation of hadrons around the quark momentum.

SIDIS

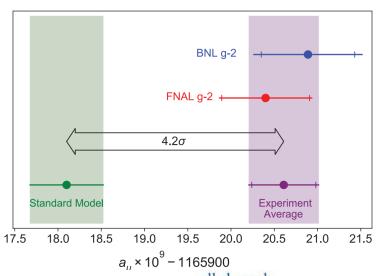
Transversity \otimes Collins FF



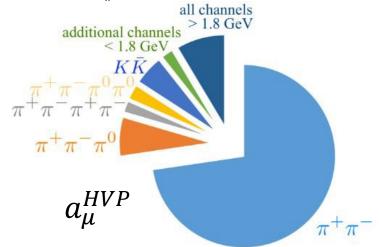
Collins FF 🛇 Collins FF

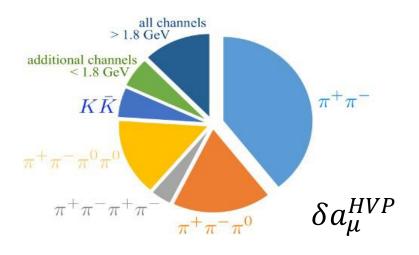
Collins FF at STCF

- > STCF is a perfect machine for studying Collins effect
- ➤ Poor performance for the traditional dE/dx & TOF PID system for tracks > 0.8GeV
- \triangleright This measurement suffer from systematic uncertain from $K-\pi$ mis-PID.
- \triangleright The mis-PID is even worse in the case of KK Collins measurement.
- \triangleright With 2.5 fb⁻¹ 7GeV $q\bar{q}$ MC ($\sigma \approx 5$ nb LundArlw), we study Collins effect at STCF.



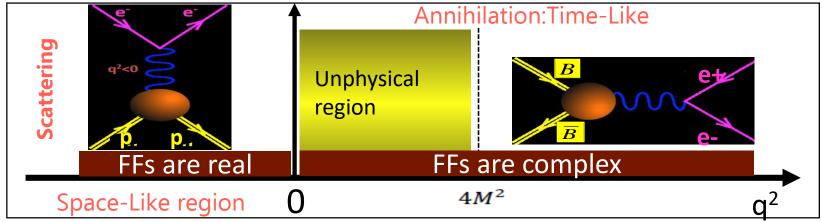
Blue: π/K mis-PID in KK Collins measurement.

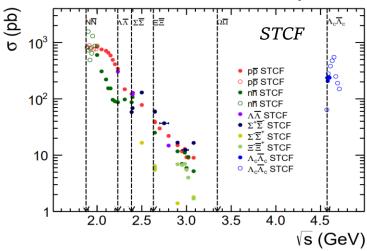

Left) de/dx&TOF. Right) a 1% mis-PID set in FastSim


- \triangleright By setting the K/π mis-PID at 1%, we obtain^[1]:
 - The statistical uncertainty for 25fb^{-1} MC is $\sim 10^{-3}$ to 10^{-2}
 - The statistical uncertainty for $1ab^{-1}$ MC is $\sim 10^{-4}$ to 10^{-3}

HVP Contribution to $(g-2)_{\mu}$

- 4.2 σ discrepancy => Strong indication for physics beyond the SM?
- Dominant uncertainty of SM prediction comes from Hadronic vacuum polarization (HVP)

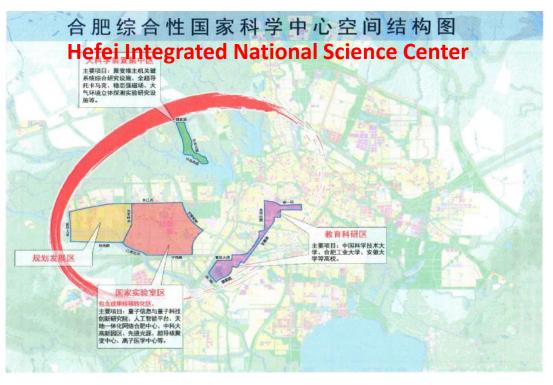



High Luminosity of STCF will largely improve the SM precisions!

Electromagnetic Form Factors

- Fundamental properties of the nucleon
 - Connected to charge, magnetization distribution
 - > Crucial testing ground for models of the nucleon internal structure

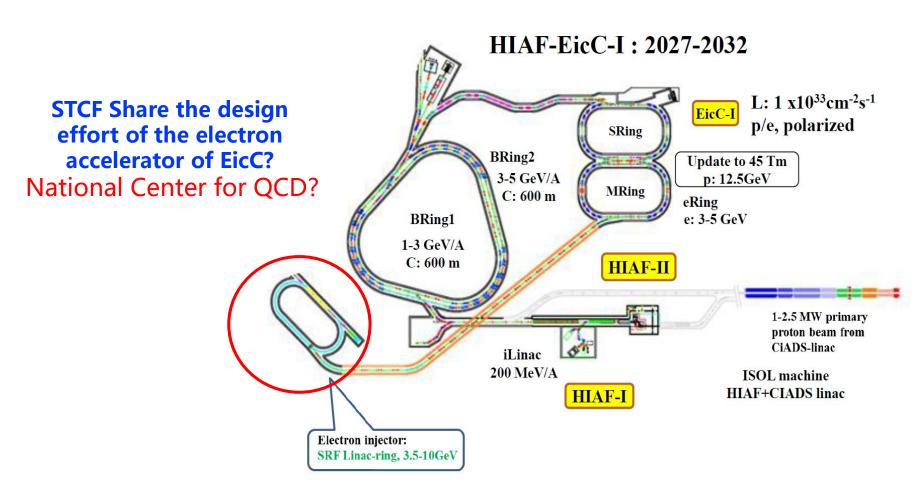
$$egin{aligned} &\Gamma_{\mu}(p',p) = \gamma_{\mu}F_{1}ig(q^{2}ig) + rac{i\sigma_{\mu\nu}q^{
u}}{2m_{p}}F_{2}ig(q^{2}ig) \ &G_{E}ig(q^{2}ig) = F_{1}ig(q^{2}ig) + au\kappa_{p}F_{2}ig(q^{2}ig), \ &G_{M}ig(q^{2}ig) = F_{1}ig(q^{2}ig) + \kappa_{p}F_{2}ig(q^{2}ig) \end{aligned}$$


Strategy & Activities

 $CDR \rightarrow TDR \rightarrow$ project application \rightarrow construction \rightarrow commissioning

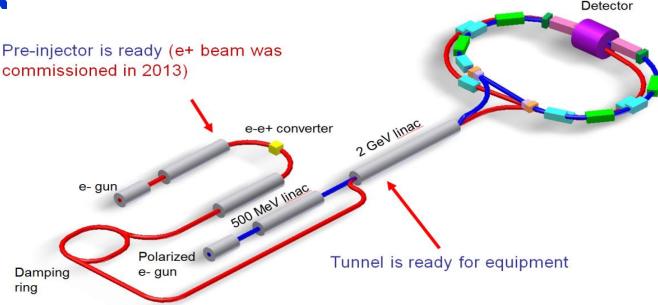
- Strategy: focus on CDR (4 years) and TDR (7 years) depend on the available resources. the construction site open.
- Domestic Workshops (2011, 12, 13, 14, 16, 20)
- International Workshops (2015, 18, 19, 20)
- 2015 Fragrance Hill-Science Conference (No. 533)
- Report to USTC Scientific Committee and USTC presidents
- Report to local government
- Form the Organization (including project manager, physics/detector/accelerator work groups)
- Regular weekly meetings for Accelerator/Detector/Physics!

Candidate Site: Hefei


One of three integrated national science centers, which will play important role in 'Megascience' of China in near future

- University of Science and Technology of China (USTC)
- National Synchrotron
 Radiation Lab and Hefei Light
 Source, operated by USTC
- The only National Lab operated by University in China. (Totally Four officially approved National Labs in China)
- Pay a lot of attention on accelerator facilities
- Hefei Advanced light source is under design
- STCF is listed in future plan

Candidate Site: Huizhou


Institute of Modern Physics, CAS, proposed building HIAF-EicC in Huizhou, Canton

International Collaboration

Super Charm-Tau at Novosibirsk, RUSSIA, Budker Institute of Nuclear Physics (BINP)

- Pre-Agreement of Joint effort on R&D, details are under negotiation
- Joint workshop between China, Russia, and Europe
 - 2018 UCAS (March), Novosibirsk (May), Orsay (December)
 - 2019 Moscow(September), 2020 Online (November)