



# FUTURE NEUTRINO EXPERIMENTS



Blair Jamieson

Bl.jamieson@uwinnipeg.ca

On behalf of Hyper-Kamiokande



FCPC 2022 May 2022



Long baseline neutrino oscillation Medium baseline neutrino oscillation

Short baseline neutrino oscillation

- **DUNE (1)**
- **Hyper-Kamiokande (2)**
- **JUNO (3)**

- Fermilab SBL (4)
- **Prospect-II**
- JUNO-TAO



# DVERVIEW WILL REVIEW IN **DRDER OF [#]**



- Legend-1000
- nEXO
- **CUPID**
- JUNO-BB

 $0\nu\beta\beta$ 

- KM3Net/ORCA
  - Ice Cube

Neutrino astrophysics

- Project 8
- ECHo Ho exeriment

Neutrino mass measurement

Nb. Sorry if I missed your experiment here!

# Long baseline oscillation program

DUNE and Hyper-Kamiokande

### Neutrino oscillations

For 3 neutrinos → Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$
 "Solar neutrinos" "Atmospheric neutrinos"

3 non zero mixing angles → possible CP violation in the lepton sector

$$P(\nu_{\mu} \to \nu_{e}) \neq P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})$$

#### Open questions:

- CP violation
- Mass hierarchy
- $\theta_{23}$  octant

| Param                                                                                              | bfp $\pm 1\sigma$         | $3\sigma$ range           |   |
|----------------------------------------------------------------------------------------------------|---------------------------|---------------------------|---|
| $\frac{\sin^2 \theta_{12}}{10^{-1}}$                                                               | $3.10^{+0.13}_{-0.12}$    | $2.75 \rightarrow 3.50$   |   |
| $\theta_{12}/^{\circ}$                                                                             | $33.82^{+0.78}_{-0.76}$   | $31.61 \rightarrow 36.27$ |   |
| $\frac{\sin^2\theta_{23}}{10^{-1}}$                                                                | $5.58^{+0.20}_{-0.33}$    | $4.27 \rightarrow 6.09$   |   |
| $\theta_{23}/^{\circ}$                                                                             | $48.3^{+1.2}_{-1.9}$      | $40.8 \rightarrow 51.3$   |   |
| $\frac{\sin^2\theta_{13}}{10^{-2}}$                                                                | $2.241^{+0.066}_{-0.065}$ | $2.046 \rightarrow 2.440$ |   |
| $\theta_{13}/^{\circ}$                                                                             | $8.61^{+0.13}_{-0.13}$    | $8.22 \to 8.99$           |   |
| $\delta_{\mathrm{CP}}/^{\circ}$                                                                    | $222^{+38}_{-28}$         | $141 \rightarrow 370$     |   |
| $\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$                                                     | $7.39_{-0.20}^{+0.21}$    | $6.79 \rightarrow 8.01$   | P |
| $\frac{10^{-5} \text{ eV}^2}{\Delta m_{32}^2}$ $\frac{10^{-3} \text{ eV}^2}{10^{-3} \text{ eV}^2}$ | $2.449^{+0.032}_{-0.030}$ | $2.358 \rightarrow 2.544$ | 2 |



### **DUNE Overview**

A next generation experiment for neutrino science, supernova physics, and physics beyond the Standard Model





Ryan Patterson 9 DUNE: Science and Status

### **DUNE** Beam





#### PIP-II

- Upgrade to Fermilab's accelerator complex
- PIP-II will make the accelerator complex capable of 1.2 MW
  - A future Booster replacement can enable 2+ MW

**Accelerator** 

### **The DUNE Neutrino Beam**

- 1.2 MW neutrino beam
- Optimized for CPV sensitivity



## DUNE Near Detectors (DUNE PRISM)



### DUNE far detector













- Excellent energy resolution
- Massive far detector event rate

Unprecedented oscillation parameter sensitivity

Eur. Phys. J. C 80, 978 (2020)



## **Appearance Sensitivity**



Eur. Phys. J. C 80, 978 (2020)



Unique access to MO + CPV in one experiment!



### The Hyper-Kamiokande Experiment

Hyper-Kamiokande (Hyper-K) is a world-leading neutrino experiment, building on success of Super-Kamiokande & T2K.

Broad & ambitious physics programmes covering many neutrino sources as well as proton decay measurements.

Water Cherenkov detector technology provides huge target mass with excellent particle ID and reconstruction capabilities.











280 m

~ 1 km

~ 295 km

### Hyper-K Detector

8 x increase in fiducial mass over Super-K

- 71 m tall x 68 m diameter = 258 kt total mass 188 kt fiducial mass
- Outer detector region for active veto of incoming particles
  - o 1 m wide around barrel, 2 m at top & bottom

New photo-detector technology for increased sensitivity

- 20,000 B&L 50 cm PMTs = 20% photo-coverage
  - 1.5 ns timing resolution (half that of SK PMTs)
  - Double quantum efficiency of SK PMTs
- Additional photo-coverage from multi-PMT modules
  - o 8 cm PMTs grouped in modules of 19 PMTs
  - o Improved position, timing, direction resolution
  - Also used for in-situ calibration of 50cm PMTs







#### **Detector Construction**



Access tunnel excavation is going well! Cavern excavation starting soon!





PMT production on schedule

Inspection and testing is ongoing

R&D for 50cm PMT covers is in progress





### Long-Baseline Neutrinos

Neutrino beam produced at J-PARC, 295 km baseline from Hyper-K.

Near and intermediate detectors measure unoscillated flux and cross sections.

Oscillations observed through  $\nu_\mu$  disappearance and  $\nu_{\rm e}$  appearance, for both neutrinos and antineutrinos.

Difference between  $\nu_{\mu} \rightarrow \nu_{\rm e}$  and  $\nu_{\mu} \rightarrow \nu_{\rm e}$  provides sensitivity to CP violation and  $\delta_{CP}$  measurement.





#### J-PARC Beam & Detectors

J-PARC beam upgrade 0.75 → 1.3 MW for increased event rate Upgraded T2K near detectors to continue to Hyper-K era







New Intermediate Water Cherenkov Detector

- Measure flux and cross sections of mostly unoscillated beam
  - Reduce systematics at far detector
- Moves vertically in ~50 m tall pit
  - Spans off-axis angles for different  $\nu$  energy spectra
- 6 m tall x 8 m diameter surrounded with ~ 500 multi-PMT modules
- Gadolinium doped water provides enhanced neutron detection





### Oscillation Measurements - Search for CP Violation



- Reduction of systematic errors has large impact on potential to discover CP violation
- >5 $\sigma$  discovery after 10 years for 60% of  $\delta_{CP}$  values
- $\sim 8\sigma$  around  $\delta_{CP} = -\pi/2$  (favoured by T2K measurements)

### Oscillation Measurements - Atmospheric $\nu$ + Beam

|                     | $\sin^2\!\theta_{23}$ | Atmospheric $ u$    | Atmospheric + beam $ u$                                  |
|---------------------|-----------------------|---------------------|----------------------------------------------------------|
| Mass<br>ordering    | 0.40                  | $2.2 \sigma$        | $\rightarrow$ 3.8 $\sigma$                               |
|                     | 0.60                  | <b>4.9</b> <i>σ</i> | $\stackrel{\longrightarrow}{\longrightarrow} 6.2 \sigma$ |
| $	heta_{23}$ octant | 0.45                  | 2.2 σ               | <b>—→</b> 6.2 <i>σ</i>                                   |
|                     | 0.55                  | 1.6 $\sigma$        | 3.6 $\sigma$                                             |

10 years with 1.3 MW, normal mass ordering is assumed

- Atmospheric neutrinos sensitive to mass ordering through Earth's matter effect
- Beam measurements enhance sensitivity to mass ordering and atmospheric mixing angle



- CP violation and matter effect both create difference between  $\nu$  and  $\nu$  oscillations
- Breaking degeneracies also enhances CP violation search

### Solar & Supernova Neutrinos

#### **Solar neutrinos**

- Measure solar upturn predicted by MSW effect
- Day-night asymmetry (from matter effect through Earth)
  - $\circ$  Study  $\sim 2\sigma$  tension in  $\Delta m^2_{21}$  between solar & KamLAND







#### Supernova neutrinos

- O(100,000)  $\nu$  events from a supernova in galactic centre
  - Ability to distinguish supernova models
- O(10) events from supernova in Andromeda galaxy
- Observation of supernova relic neutrinos within 10 years

### Hyper-K Summary

Hyper-Kamiokande construction has begun, with first data taking planned for 2027!

- Building on the success of Super-K & T2K with a next generation neutrino experiment
  - O New far detector with 8 x fiducial mass of Super-K
  - O Improved photosensors with 2 x detection efficiency & timing resolution reduced by half
  - O Upgraded near detectors and new intermediate detector
  - O Beam upgrade from 750 kW to 1.3 MW
- Wide range of physics measurements
  - O Search for CP violation with precision oscillation measurements
  - O Neutrino astrophysics through solar and supernova neutrinos
  - O Searches for proton decay and other new physics





# Medium baseline

JUNO experiment



## JUNO Experiment: Layout

This talk



- A multi-purpose liquid scintillator experiment in China:
  - Reactor  $\overline{\nu}_e \sim 60/\text{day}$
  - Atmospheric ν's: several/day
  - Solar  $v_e \sim 10\text{-}1000/\text{day}$
  - Supernova  $\nu$ 's  $\sim 10^4$  in 10 s for 10 kpc
  - DSNB 2-4 IBD/year
  - Geo-ν's 1-2/day

See also Giulio Settanta's talk: "JUNO Non-oscillation Physics"

• Optimized baseline for neutrino mass ordering determination with reactor  $\bar{\nu}_e$ 

#### Jiangmen Underground Neutrino Observatory



Figure: Setup of JUNO experiment, with the main 20-kton JUNO detector and satellite 2.8-ton TAO detector.



## JUNO Experiment: Detector



- A multi-purpose liquid scintillator experiment.
- Energy resolution  $< 3\%/\sqrt{E(\text{MeV})}$ :
  - ~78% PMT coverage, ~1350 PE/MeV:
    - 5000 Hamamatsu 20" dynode-PMTs
    - 12612 NNVT 20" MCP-PMTs
    - 25600 HZC 3" PMT
- Large target volume:
  - 20-kton LAB-based liquid scintillator
- Energy scale uncertainty <1%</li>
  - JHEP03(2021)004: "Calibration strategy of the JUNO experiment"
- Background control
  - arXiv:2107.03669: "Radioactivity control strategy for the JUNO detector"



See also Zhimin Wang's talk: "JUNO Detector Design & Status"



### Reactor $\bar{\nu}_e$ : Source and Oscillation



- **Source**: reactor antineutrino from fission of four isotopes:
  - <sup>235</sup>U, <sup>238</sup>U, <sup>239</sup>Pu, and <sup>241</sup>Pu
  - Major: 6 YJ cores,  $4 \rightarrow 2$  TS cores

J. Phys. G43:030401 (2016) → arXiv:2104.02565

Table: Thermal power and baseline to the JUNO detector for the Yangjiang (YJ), Taishan (TS), Daya Bay (DYB), and Huizhou (HZ) reactor cores.

| Cores        | YJ-1  | YJ-2  | YJ-3  | YJ-4  | YJ-5  | YJ-6  | TS-1  | TS-2  | DYB  | HZ   |
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|
| Power (GW)   | 2.9   | 2.9   | 2.9   | 2.9   | 2.9   | 2.9   | 4.6   | 4.6   | 17.4 | 17.4 |
| Baseline(km) | 52.74 | 52.82 | 52.41 | 52.49 | 52.11 | 52.19 | 52.77 | 52.64 | 215  | 265  |



• **Oscillation**:  $\bar{\nu}_e$  survival probability in vacuum<sup>[1]</sup>:

$$\begin{split} P_{\overline{\nu}_{e} \to \overline{\nu}_{e}} &= 1 - \cos^{4}\theta_{13} \overline{\sin^{2}2\theta_{12}} \sin^{2} \underbrace{\frac{\Delta m_{12}^{2}L}{4E}} \\ - \underline{\sin^{2}2\theta_{13}} \left(\cos^{2}\theta_{12} \sin^{2} \underbrace{\frac{\Delta m_{31}^{2}L}{4E}} + \sin^{2}\theta_{12} \sin^{2} \underbrace{\frac{\Delta m_{32}^{2}L}{4E}} \right) \end{split}$$



The energy resolution is one of the key factors for determining neutrino mass ordering (NMO).



#### Reactor $\bar{\nu}_e$ : Precision Measurement of Oscillation Parameters



#### • Precision measurement of oscillation parameters:

| Relative<br>Precision (%)             | $\sin^2 \theta_{12}$ | $\Delta m_{21}^2$ | $\sin^2\theta_{13}$ | $\Delta m_{31}^2/\Delta m_{32}^2$ |
|---------------------------------------|----------------------|-------------------|---------------------|-----------------------------------|
| Current global fit<br>(Nufit 5.0) [1] | 4.0                  | 2.8               | 2.8                 | 1.1                               |
| PDG2020 [2]                           | 4.2                  | 2.4               | 3.2                 | 1.4                               |
| JUNO 6 years                          | 0.5                  | 0.3               | 12                  | 0.2                               |

**JUNO Simulation Preliminary** 

- JUNO will dominant the precision of  $\Delta m_{31}^2/\Delta m_{32}^2$ ,  $\Delta m_{21}^2$ , and  $\sin^2\theta_{12}$  in 1 year
- To sub-percent level in 1-2 years



A publication on the precision measurement of the oscillation parameters is coming soon.

[1]. JHEP09(2020)178 [2]. PTEP 2020 (2020) 8, 083C01

## JUNO Physics Summary

- Multipurpose experiment JUNO:
- Neutrino mass ordering determination:
  - >  $3\sigma$  in 6 years with only reactor  $\bar{\nu}_e$
  - >  $1\sigma$  with JUNO atmospheric neutrinos
- Precision measurement of oscillation parameters
  - Sub-percent for  $\Delta m_{31}^2/\Delta m_{32}^2$ ,  $\Delta m_{21}^2$ , and  $\sin^2\theta_{12}$  with reactor  $\bar{\nu}_e$
  - $\theta_{23}$  octant with atmospheric neutrinos
  - Independent  $\Delta m_{21}^2$  and  $\sin^2\theta_{12}$  measurement with solar <sup>8</sup>B neutrino
- TAO detector
  - High precision reactor neutrino spectrum
  - Sterile neutrino exploration
- JUNO will start operation in 2023

# Short baseline

FERMILAB Short baseline program

### Hints on anomalies from the past decades

credit: A. Fava

- Several neutrino experiments showing unexpected results at an L/E ~ 1 km/GeV
  - $\overline{\nu}_e$  disappearance in reactor experiments
  - $\nu_e$  disappearance in source calibrations of solar  $\nu$  experiments
  - Appearance of  $v_e$  and  $\overline{v_e}$  in neutrino beam experiments
  - But no hints in  $\nu_{\mu}$  disappearance experiments so far

| Experiment  | Туре               | Channel                                     | Significance |
|-------------|--------------------|---------------------------------------------|--------------|
| LSND        | DAR accelerator    | $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ | 3.8 σ        |
| MiniBooNE   | SBL accelerator    | $\nu_{\mu} \rightarrow \nu_{e}$             | 4.5 σ        |
|             |                    | $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ | 2.8 σ        |
| GALLEX/SAGE | Source – e capture | $v_e$ disappearance                         | 2.8 σ        |
| Reactors    | β decay            | $\bar{\nu}_e$ disappearance                 | 3.0 σ        |

- Observations can possibly be explained by sterile neutrinos (1 or more) with a  $\Delta m^2$  of  $\sim 1$  eV<sup>2</sup>.
- However, no model describes all observations and other interpretations are definitely possibly and exciting!





 $\nu_e$  disappearance in



Phys. Rev. Lett., vol. 121, no. 22, p. 221801, 2018

### Fermilab Short Baseline Neutrino Program

#### Three liquid argon TPC detectors in the same beamline

- Goal:
  - Resolving the electromagnetic event excess observed by MiniBooNE and LSND
- Excellent shower reconstruction and e /  $\gamma$  separation capabilities in LArTPCs
- Study of  $\nu_e$  appearance,  $\nu_{\mu}$  disappearance in the same experiment!
- MicroBooNE is up and running since October 2015
- Far detector (ICARUS T600) is now commissioning
- Near detector (SBND) under construction.



arXiv: 1503.01520



24

### **SBN Sensitivity**

## SBN joint analysis with SBND (ND) and ICARUS (FD)

- Unique capability to study  $\nu_e$  appearance and  $\nu_\mu$  disappearance in the same beam and experiment
- The sterile neutrino 3+1 parameter space preferred by LSND/MiniBooNE appearance anomaly is covered with 3-5σ by SBN (6.6 x 10<sup>20</sup> POT, equivalent to ~ 3 years of data taking)
- Improved sensitivity to the disappearance channel over current limits
- ICARUS and SBND collaborations are working jointly on developing reconstruction & analysis tools



Source: Ann. Rev. Nucl. Part. Sci. 2019.69:363-387



# TONTIUS ION

- There are many exciting neutrino experiments planned and under construction around the world
  - Too many to talk about in 30 min!
- The next decade of measurements will see us
  - Determine if there is CP violation in neutrinos
  - Determine the mass ordering of neutrinos
  - Make progress on understanding short baseline neutrino measurements
  - Get closer to measuring the absolute neutrino masses
  - Discover new puzzles related to neutrino properties



### **Proton Decay**

- Huge detector volume for searching for proton decay
- Push limits an order of magnitude beyond current limits



10years of HK

Number of Events

 $\tau = 1.7 \text{ x } 10^{34} \text{ years case}$ 

800

Free

proton

### **Detector Construction**





# ハイパーカミオカンデ 着工記念式典



Hyper-Kamiokande Groundbreaking Ceremony

宇宙線研

-Institute for Cosmic Ray Research, The University of Tokyo



### Hyper-Kamiokande Collaboration



Over 450 collaborators from 99 institutions in 20 countries and growing!



## Neutrino mass measurement

Katrin->Project8, Zero neutrino double beta decay experiments

# 0νββ

### Present best Limits on $T_{1/2}$

- $^{136}$ Xe (*KamLAND-Zen*): >  $10^{26}$  yrs
- $^{76}$ Ge (GERDA) :> 1.8 x  $10^{26}$  yrs
- $^{130}$ Te (CUORE) : > 3.2 x  $10^{25}$  yrs



#### **Future goal**

- ~100x improvement in  $T_{1/2}$
- Covers Inverted v-mass ordering region
- $^{136}$ Xe (nEXO) :  $T_{1/2} > 10^{28}$  yrs
- $^{76}$ Ge (LEGEND-1000) :  $T_{1/2} > 10^{28}$  yrs
- $^{130}$ Te (CUPID) :  $T_{1/2} > 10^{27}$  yrs



30 yrs history of  $\beta$ -decay measurement

KATRIN will continue delivering world-leading sensitivity







Spectroscopy (CRES)



#### **Next generation β-decay**

#### Targeted sensitivity: 40 meV

- Multi m³-yr effective exposure
- High flux atomic tritium source
- ~0.1 eV resolution
- 10<sup>-7</sup> field uniformity