

Muon Campus At Fermilab

Sudeshna Ganguly

FPCP

27 May, 2022

Antiproton source → Muon Campus

M4, M5 beamlines to transport beam to Muon g-2, Mu2e

Antiproton accumulator ring removed, Debuncher reused as Delivery Ring

120 GeV protons on target for antiproton production Replaced by

8 GeV protons on target for muon production for g-2 & 8 GeV transport for Mu2e bypassing target

120 GeV extraction from Main Injector for antiproton stacking Replaced by

8 GeV extraction from Recycler for Muon campus

Muon g-2 Beam

- Short batches of 8 GeV protons into Recycler
- Each batch divided into 4 bunches of 10^{12} protons
- Extract each bunch at a time and directed to target
- Long beam line channel to collect $\pi \to \mu$
- $p/\pi/\mu$ beam enters Delivery Ring (DR); protons kicked out; π decay away
- μ enter storage ring

Mu2e Beam

- Delivery of proton beam for Mu2e is similar to that of g-2
- 8 GeV transport for Mu2e bypassing target
- Each proton bunch synchronously transferred to DR where beam is resonantly extracted to Mu2e proton target via M4 beamline
- A vertical dipole is rotated to direct beam to Mu2e via M4 line rather than to g-2 via M5 line

Differences b/w g-2 & Mu2e

- 8.89 GeV/c proton beam from Recycler transported to AP-0 target station
- A 3.1 GeV secondary
 beam transported through
 M2 & M3 to DR
- Beam takes 4 turns around DR
- Single turn extraction into
 M4 & M5 to g-2 ring

- 8.89 GeV/c proton
 beam bypasses
 Target Station and
 through M3 to DR
- Protons resonantly extracted from DR over 43 ms into M4
 Line
- Protons transported through M4 to Mu2e target

g-2 operations

Mu2e operations

Muon Campus Experiments: Muon g-2, Mu2e

- Highly accurate test of Standard Model
- Looks for significant deviation
- Esra Barlas's talk on Experimental review of g-2

- Looks for rare processes using high intensity muon beam
- Talk by Mete Yucel on "A Search for New Physics in the Lepton Sector: Charged Lepton Flavor Violation and the Mu2e Experiment"

Muon g-2 Beam Delivery Details

Recycler Ring 2.5 MHz Rebunching

- First batch(4×10^{12} protons) injected into Recycler at t = 0
 - ▶ 84 53 MHz bunches/batch
- Second batch injected at t = 200
- Rebunching ramp plays immediately after 2nd bunch injected
 - ▶ 53 MHz RF turned off
 - Adiabatic bunching with 2.5 MHz for 90 ms
- o After rebunching, 8 2.5 MHz bunches are circulating in Recycler First bunch (10^{12} protons) extracted to g–2 target at t = 460
- 2.5 MHz bunches extracted, one-at-a-time, every 10ms

Proton Beam on Target

Parameter	Value
Protons on target (POT)	10 ¹² per pulse
Pulse width	120 ns
Number of pulses	16
Bunch average frequency	11.4 Hz
Primary kinetic energy	8 GeV

 Performance sensitive to beam spot size on target

3.11 GeV/c Pions Selection

11

Collimator

Muon Capture & Transport Lines (M2-M3 Lines)

M1 line

Target Li
SEM Lens
Dipole

3.1 GeV/cπ, μ, ρ
M2 line

Ream
Dump
View

- o Beamlines have high magnet density with large aperture quadrupoles
- Mostly muons from forward decays accepted & 90% polarization achieved
- o 70% of pions expected to decay along M2-M3 lines

Proton Removal

- Secondary Beam transferred to Delivery Ring
- o At Delivery Ring injection beam composition:
 - -89% protons
 - -8% pions
 - -2% muons
- o After 4 turns, only protons and muons remain
- Protons sent to beam dump prior to extraction of remaining muons to g-2

Proton Removal

- o Kicker rise ~180 ns; protons removed during turn 4
- Remaining beam extracted to g-2 after turn 4

Transport from Delivery Ring to g-2 Ring

Injection into g-2 Storage Ring

- Weak decay of pions produces highly polarized muon beam
- Inflector provides field free region to deliver beam to edge of storage region
- Stops strong deflection of the beam

- Incident beam center 77 mm off from storage region center
- Muon transmission efficiency is 2-4%

Performance Enhancement

- o g-2 ring accepts only a fraction of delivered muons
- Goal: provide as many muons within magic momentum (~3.1 GeV/c) band

- Proposal to reduce momentum spread in M4/M5:
 - Supported by Fermilab's LDRD program: to design, install and test a wedge in Fermilab's muon campus, system installed and commissioned
 - Primary test before g-2 Run2: up to a 7% improvement on stored muons

g-2 Status & Future Plans

- Run1 is about the 6% of E989 total budge
 - o In November 2021 Run5 started
 - Accumulating 5.1 BNL up to now
- Final goal for Run5 is ~19 BNL
- Next year a μ Run likely reduce uncertainty in anomalous magnetic moment of negative muon by a factor of two
- Plan to acquire equivalent of a four BNL-sized data set in a sevenmonth period
 - Required polarity change of main power supplies, trims
 - Polarity change of kickers and septa
 - \circ At target station: original Pbar design, μ is normal polarity
- Polarity change planned during summer shutdown 2022 prior to running

Mu2e Beam Delivery Details

Mu2e Proton Beam Time Structure

The Signal

$$\mu^-N \rightarrow e^-N$$

 L_{μ} : 1

L_e: 0

Both L_{μ} and L_{e} are not conserved in this process

- Each of 8 bunches from Recycler slow spilled to Mu2e over an interval of 380 ms
- Each spill 43 ms long with a 5 ms reset between spills
- After 8th spill, Recycler used for NuMI/NOvA slip-stacking

Resonant Extraction

- Use nonlinear (sextupole) magnets to drive a harmonic instability
- Extract unstable beam as it propagates outward
 - Standard technique in accelerator physics

Reduction of Prompt Backgrounds

3rd Order Resonance Extraction

Quadrupoles drive a 1/3 integer resonance in horizontal tune

Sextupoles induce a controlled beam instability

Septum peels off a micro bunch on each turn

To control spill rate uniformity during resonant extraction, RF knockout technique used

Proton Beam Transport from DR to Mu2e

• A shield wall allows running low intensity beam to Diagnostic Absorber while installation work continues in Mu2e building

•Installation of M4 is completed to Diagnostic Absorber

Delivery Ring

Beam Commissioning to Mu2e Diagnostic Absorber

- Commissioned beam to Diagnostic Absorber for first time!
- Along M4 line, multi wires at strategic locations to monitor the beam profiles
- See beam to all of them suggests that we had sent beam to diagnostic absorber successfully
- Satisfies Mu2e project key performance parameter
- Plan to upgrade a toroid in diagnostic absorber line so to monitor beam intensity

New Ideas: Machine Learning Spill

Comparing different ML regulation schemes: optimized PID regulator vs ML regulator

READS (Real-Time Edge AI for Distributed Systems):

- o Improve real-time spill regulation with reinforcement learning algorithms for guided operations optimization
 - » Increases Spill Duty Factor of slow spill extraction

Courtesy A. Narayanan & M. Thieme, IPAC'21, THPAB243

New Ideas: Unique Proton Target

Unique target has been built »Testing of target at APO, with Mu2e like beam underway

- Radiatively cooled
- Peak temperature = 1130°C (@ 8 kW proton beam power)
- Variable length segmented core and fins to control longitudinal temperature profile
- •Extended mounting bars on outside ring to minimize bending moment on target
- •Stopped muon yield = $0.0015 \mu/POT$

Work underway on Mu2e target remote handling

Beyond Mu2e: Potential Experiments

- Mu2e II: Searching for Muon Conversion in the PIP II Era will utilize 100 kW beam
- PIP-II will power both DUNE & other experiments like Mu2e-II
- Many other ideas to build short-, medium-, and long-term muon-based experiments were discussed at
 - "Potential Fermilab Muon Campus & Storage Ring Experiments workshop" (https://indico.fnal.gov/event/48469/)
 - "Muon Properties and Related Topics III" workshop (https://indico.fnal.gov/event/52525/)

Summary

An accelerator facility to provide beams to both g-2 and Mu2e experiments has been designed and constructed at Fermilab

- Facility has been commissioned in 2017 and is now in operation phase for Muon g-2 since Experiment since 2018
- It currently delivers roughly 1x the BNL statistics per month. Experiment will complete at 20x the BNL statistics
- A passive wedge system shows up to 7% improvement on stored muons
- μ^- mode is not compatible with Mu2e mode –run for 7 months before switching to Mu2e mode
- Current plan is to run g-2 until 2023 while in parallel doing commissioning tests for Mu2e beam delivery opportunistically