

Why is it important to measure $\left|V_{u b}\right| \&\left|V_{c b}\right|$?

Nobel prize 2008

Why is it important to measure $\left|V_{u b}\right| \&\left|V_{c b}\right|$?

Why is it important to measure $\left|V_{u b}\right| \&\left|V_{c b}\right|$?

Overconstrain Unitarity condition \rightarrow Potent test of Standard Model

B-Meson Mixing

Why is it important to measure $\left|V_{u b}\right| \&\left|V_{c b}\right|$?

CPV Kaon Mixing

Overconstrain Unitarity condition \rightarrow Potent test of Standard Model

B-Meson Mixing

Why is it important to measure $\left|V_{u b}\right| \&\left|V_{c b}\right|$?

CPV Kaon Mixing

Present day

B-Meson Mixing

Why is it important to measure $\left|V_{u b}\right| \&\left|V_{c b}\right|$?

How can we measure $\left|V_{u b}\right| \&\left|V_{c b}\right| ?$

How are we doing?

$\left|\mathrm{V}_{\mathrm{ub}}\right|$ Measurements over Time

How are we doing?

$\left|V_{u b}\right|$ Measurements over Time

cha\|ences of neresuringinciusive iv ind

> Inclusive $B \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ measurements are extremely challenging due to dominant $B \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ background

Measurement of partial branching fractions of inclusive $B \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ decays with hadronic tagging [PRD 104, 012008 (2021), arXiv:2102.00020]

Measurement of differential branching fractions of inclusive $B \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ decays with hadronic tagging [Phys. Rev. Lett. 127, 261801 (2021), arXiv:2107.13855]
3.

New measurement of ratio of inclusive $B \rightarrow X_{u} \ell \bar{\nu}_{\ell} / B \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ with improved tagging and data-driven background templates [to appear]

1. Measurement of partial branching fractions of inclusive $B \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ decays with hadronic tagging [PRD 104, 012008 (2021), arXiv:2102.00020]

Use full Belle data set of 711/fb
Hadronic tagging with neural networks (ca. 0.2-0.3\% efficiency)

1. Measurement of partial branching fractions of inclusive $B \rightarrow X_{u} \ell \bar{v}_{\ell}$ decays with hadronic tagging [PRD 104, 012008 (2021), arXiv:2102.00020]

Use full Belle data set of 711/fb

Hadronic tagging with neural networks (ca. 0.2-0.3\% efficiency)

Use machine learning (BDTs) to suppress backgrounds with 11 training features, e.g. $m_{\text {miss }}^{2}, \# K^{ \pm}, \# K s$, etc.

Tag Side

$$
m_{\mathrm{miss}}^{2}=\left(p_{\mathrm{sig}}-p_{X}-p_{\ell}\right)^{2} \approx m_{\nu}^{2}=0 \mathrm{GeV}^{2}
$$

Before BDT selection
Hadronic Mass $M_{X}=\sqrt{p_{X}^{2}}$
$\underset{\text { squared }}{\text { Four-momentum transfer }} q^{2}=\left(p_{B}-p_{X}\right)^{2}$

Hadronic Mass $M_{X}=\sqrt{p_{X}^{2}}$

Four-momentum transfer squared
$q^{2}=\left(p_{B}-p_{X}\right)^{2}$

Lepton Energy in signal B restframe
E_{ℓ}^{B}

Fit kinematic distributions and measure partial BF
3 phase-space regions

$$
\left|V_{u b}\right|=\sqrt{\frac{\Delta \mathcal{B}\left(B \rightarrow X_{u} \ell^{+} \nu_{\ell}\right)}{\tau_{B} \cdot \Delta \Gamma\left(B \rightarrow X_{u} \ell^{+} \nu_{\ell}\right)}}
$$

Phase-space region
$M_{X}<1.7 \mathrm{GeV}$
$M_{X}<1.7 \mathrm{GeV}, q^{2}>8 \mathrm{GeV}^{2}$
$E_{\ell}^{B}>1 \mathrm{GeV}$

4 predictions of the partial rate
 region with $E_{\ell}^{B}>1 \mathrm{GeV}$

Arithmetic average:

$$
\left|V_{u b}\right|=(4.10 \pm 0.09 \pm 0.22 \pm 0.15) \times 10^{-3}
$$

Stability as a function of BDT cut:

Measurement of 6 kinematic variables characterizing $B \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ in $E_{\ell}^{B}>1 \mathrm{GeV}$ region of PS
Selection and reconstruction analogous to partial BF measurement
Apply additional selections to improve resolution and background shape uncertainties

Differential Spectra

Differential Spectra

Full experimental correlations

Can be used for future
NNVub [arXiv:1604.07598]
shape-function
independent $\left|V_{u b}\right|$ determinations improved tagging and data-driven background templates [to appear]

Use full Belle data set of 711/fb

Improved Hadronic Tagging

 using Belle II algorithm(ca. 2 times more efficient)

$B \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ Extraction

Cut-based selection to suppress $B \rightarrow X_{C} \ell \bar{\nu}_{\ell}$:

$$
\left|m_{v}^{2}\right| \approx\left|m_{\text {Miss }}^{2}\right|<0.43 \mathrm{GeV}^{2} / \mathrm{c}^{4}
$$

Charged slow pion veto.
Kaon veto: even $N_{K^{ \pm}}+N_{K_{s}^{0}}$

Extraction of $B \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ in 2D fit to $q^{2}: p_{\ell}^{B}$

Use $B \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ shape from Kaon anti-cut region with MC based transfer factors

$B \rightarrow X_{u} \ell \bar{\nu}_{\ell} / B \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ Extraction

Extract $B \rightarrow X_{c} \ell v$ yield via simple background subtraction in total $B \rightarrow$ Xev sample.

Determine directly ratio of
$\frac{\Delta \mathcal{B}\left(B \rightarrow X_{u} \ell v: p_{t}^{B}>1.0 \mathrm{GeV} / \mathrm{c}\right)}{\Delta \mathcal{B}\left(B \rightarrow X_{c} \ell v: p_{t}^{B}>1.0 \mathrm{GeV} / \mathrm{c}\right)}=1.95\left(1 \pm 8.4 \%_{\text {stat }} \pm 7.2 \%_{\text {syst }}\right) \times 10^{-2} \quad \propto \frac{\left|V_{u b}\right|^{2}}{\left|V_{c b}\right|^{2}}$

Can also convert this for now into a direct determination of $\left|V_{u b}\right|$

$$
\begin{gathered}
\left|V_{u b}\right|=\sqrt{\frac{1}{\tau_{B} \Delta \Gamma} \frac{\Delta \mathcal{B}\left(B \rightarrow X_{u} \ell v\right)}{\Delta \mathcal{B}\left(B \rightarrow X_{u} \ell v\right)} \Delta \mathcal{B}\left(B \rightarrow X_{c} \ell v\right)} \\
\tau_{B}=1.579 \pm 0.004 \mathrm{ps} \\
1.95(1 \pm 0.084 \pm 0.072) \times 10^{-2}
\end{gathered}
$$

Belle, 2007 [PRD 75, 032001]: $(8.41 \pm 0.15 \pm 0.17) \%$ Babar, 2010 [PRD 81, 0032003]: (8.63 ± 0.17)\%

$B \rightarrow X_{u} \ell \bar{\nu}_{\ell} / B \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ Extraction

Extract $B \rightarrow X_{c} \ell v$ yield via simple background subtraction in total $B \rightarrow$ Xev sample.

Determine directly ratio of

New Developments in inclusive $\left|V_{c b}\right|$

$$
\begin{gathered}
\text { Inclusive }\left|V_{c b}\right| \\
\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}
\end{gathered}
$$

Operator Product Expansion (OPE)

Established approach: Use hadronic mass moments, lepton energy moments etc. to determine non-perturbative matrix elements (ME) of OPE and extract $\left|V_{\mathrm{cb}}\right|$

Bad news: number of these matrix elements increases if one increases

$$
\text { expansion in } 1 / m_{b, c}
$$

New Developments in inclusive $\left|V_{c b}\right|$

$$
\begin{gathered}
\text { Inclusive }\left|V_{c b}\right| \\
\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}
\end{gathered}
$$

Operator Product Expansion (OPE)

$$
\mathcal{B}=\left|V_{q b}\right|^{2}\left[\Gamma\left(b \rightarrow q \ell \bar{\nu}_{\ell}\right)+1 / m_{c, b}+\alpha_{s}+\ldots\right]
$$

Established approach: Use hadronic mass moments, lepton energy moments etc. to determine non-perturbative matrix elements (ME) of OPE and extract $\left|V_{\mathrm{cb}}\right|$

Bad news: number of these matrix elements increases if one increases

$$
\text { expansion in } 1 / m_{b, c}
$$

Innovative idea from [JHEP 02 (2019) 177, arXiv:1812.07472]
(M. Fael, T. Mannel, K. Vos)
\rightarrow Number of ME reduce by exploiting reparametrization invariance, but not true for every observable (e.g. not for $\left\langle M_{X}\right\rangle$)

But it holds for $\left\langle q^{2}\right\rangle$ and at $1 / m_{b}^{4}$ the \# of ME reduces from $13 \rightarrow 8(!)$

New Developments in inclusive $\left|V_{c b}\right|$

$$
\begin{gathered}
\text { Inclusive }\left|V_{c b}\right| \\
\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}
\end{gathered}
$$

Operator Product Expansion (OPE)

$$
\mathcal{B}=\left|V_{q b}\right|^{2}\left[\Gamma\left(b \rightarrow q \ell \bar{\nu}_{\ell}\right)+1 / m_{c, b}+\alpha_{s}+\ldots\right]
$$

Established approach: Use hadronic mass moments, lepton energy moments etc. to determine non-perturbative matrix elements (ME) of OPE and extract $\left|V_{\mathrm{cb}}\right|$

Bad news: number of these matrix elements increases if one increases expansion in $1 / m_{b, c}$

Measurements of q^{2} moments of inclusive $B \rightarrow X_{C} \ell \bar{\nu}_{\ell}$ decays with hadronic tagging [PRD 104, 112011 (2021), arXiv:2109.01685]

Measurements of Lepton Mass squared moments in inclusive $B \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ Decays with the Belle II Experiment
[Submitted to PRD, arXiv:2205.06372]

New Developments in inclusive $\left|V_{c b}\right|$

Traditional approach: Use hadronic mass moments, lepton energy moments etc. to determine non-perturbative matrix elements (ME) of OPE and extract $\left|\mathrm{V}_{\mathrm{cb}}\right|$

Bad news: number of these matrix elements increases if one increases expansion in $1 / m_{b, c}$

Third order correction to the semileptonic $b \rightarrow c$ and the muon decays [Phys.Rev.D 104 (2021) 1, 016003, arXiv:2011.13654] Three loop calculations and inclusive $\left|V_{c b}\right|$ [Phys.Lett.B 822 (2021) 136679, arXiv:2107.00604]

First determination of $V_{c b}$ from q^{2} moments [to appear] hadronic tagging [PRD 104, 112011 (2021), arXiv:2109.01685]

Key-technique: hadronic tagging

1. Measurements of q^{2} moments of inclusive $B \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ decays with hadronic tagging [PRD 104, 112011 (2021), arXiv:2109.01685]

Event-wise Master-formula

$$
\left\langle q^{2 m}\right\rangle=\frac{C_{\mathrm{cal}} \cdot C_{\mathrm{acc}}}{\sum_{i}^{\text {events }} w\left(q_{i}^{2}\right)} \times \sum_{i}^{\text {events }} w\left(q_{i}^{2}\right) \cdot q_{\mathrm{cal} i}^{2 m}
$$

Step \#3: If you fail, try again

 Decays with the Belle II Experiment [Submitted to PRD, arXiv:2205.06372]

Key-technique: hadronic tagging

Improved Hadronic Tagging

 using Belle II algorithm (ca. 2 times more efficient)$$
q^{2}=\left(p_{\mathrm{sig}}-p_{X_{c}}\right)^{2}
$$

[Full Event Interpretation, T. Keck et al, Comp. Soft. Big. Sci 3 (2019), arXiv:1807.08680]

Key-technique: hadronic tagging

Improved Hadronic Tagging using Belle II algorithm (ca. 2 times more efficient)

Can identify X_{c} constituents

Theory progress

Fantastic progress on the theory side: semileptonic rate @ N3LO!

M. Fael, K. Schönwald, M. Steinhauser [Phys.Rev.D 104 (2021) 1, 016003, arXiv:2011.13654]

Renormalization scale
Updated inclusive fit to $\left\langle E_{\ell}\right\rangle,\left\langle M_{X}\right\rangle$ moments:

$$
\begin{aligned}
& \left|V_{c b}\right|=42.16(30)_{t h}(32)_{\exp }(25)_{\Gamma} 10^{-3} \\
& \qquad \Delta\left|V_{c b}\right| /\left|V_{c b}\right|=1.2 \%! \\
& \text { M. Bordone, B. Capdevila, P. Gambino } \\
& \text { [Phys.Lett.B } 822 \text { (2021) 136679, arXiv:2107.00604] }
\end{aligned}
$$

$m_{b}^{\text {kin }}$	$\bar{m}_{c}(2 \mathrm{GeV})$	μ_{π}^{2}	ρ_{D}^{3}	$\mu_{G}^{2}\left(m_{b}\right)$	$\rho_{L S}^{3}$	$\mathrm{BR}_{c \ell \nu}$	$10^{3}\left\|V_{c b}\right\|$
4.573	1.092	0.477	0.185	0.306	-0.130	10.66	42.16
0.012	0.008	0.056	0.031	0.050	0.092	0.15	0.51
1	0.307	-0.141	0.047	0.612	-0.196	-0.064	-0.420
	1	0.018	-0.010	-0.162	0.048	0.028	0.061
		1	0.735	-0.054	0.067	0.172	0.429
			1	-0.157	-0.149	0.091	0.299
				1	0.001	0.013	-0.225
					1	-0.033	-0.005
						1	0.684
							1

$\left|V_{c b}\right|$ from q^{2} mom.

F. Bernlochner, M. Fael, K. Olschwesky, E. Persson,

Also first extraction of $\left|V_{c b}\right|$ from q^{2} moments:

Included corrections on the mom. predictions

$\longrightarrow \quad\left|V_{c b}\right|=\left(41.69 \pm\left. 0.59\right|_{\mathrm{fit}} \pm\left. 0.23\right|_{\mathrm{h} . \mathrm{o} .}\right) \cdot 10^{-3}=(41.69 \pm 0.63) \cdot 10^{-3}$

New Developments in exclusive $\left|V_{c b}\right|$

Very exciting times:

After more than 10 years in the making, we have first beyond zero recoil LQCD predictions beyond zero recoil for $\left.B \rightarrow D^{*} \ell \bar{\nu}_{\ell}:-\right)$

One is finished, two are nearly finished:

A. Bazavov et al. [FNAL/MILC] [Under Review, arXiv:2105.14019]

New Developments in exclusive $\left|V_{c b}\right|$

Also experimentally very exciting times:

LHCb keeps producing impressive results probing $B_{s} \rightarrow D_{s}^{(*)} \ell \bar{\nu}_{\ell}$ decays, Belle II also presented first determinations of $\left|V_{c b}\right|$ using $B \rightarrow D^{*} \ell \bar{\nu}_{\ell}$

Small taste of what there is to come from both experiments !

Measurement of $\left|V_{c b}\right|$ with $B_{s} \rightarrow D_{s}^{(*)} \mu \bar{\nu}_{\mu}$ decays [Phys. Rev. D 101, 072004, arXiv:2001.03225]

First glimpse at $\left|V_{c b}\right|$ in $B^{0} \rightarrow D^{(*)-} \ell^{+} \nu_{\ell}$ with Belle II data [Preliminary]

Leverage large separation of decay vertex from primary vertex to reconstruct B_{s} flight direction; reconstruct corrected mass $m_{\text {corr }}$:

Exploit $p_{\perp}\left(D_{s}\right)$ correlation with w to fit form factors

Background subtracted and fitted distributions:

$\longrightarrow\left|V_{c b}\right|_{\mathrm{BGL}}=(41.7 \pm 0.8($ stat $) \pm 0.9($ syst $) \pm 1.1(\mathrm{ext})) \times 10^{-3}$

Also provide unfolded w spectrum for $B_{s} \rightarrow D_{s}^{*} \mu \bar{\nu}_{\mu}$

Reconstructed with hadronic tagging and using 189.3/fb

With hadronic tagging can reconstruct

$$
m_{\mathrm{miss}}^{2}=\left(p_{\mathrm{sig}}-p_{D^{*}}-p_{\ell}\right)^{2} \sim p_{\nu}^{2}=0
$$

Reconstructed with hadronic tagging and using 189.3/fb

Background subtracted \& unf. w spectrum

With hadronic tagging can reconstruct

$$
m_{\mathrm{miss}}^{2}=\left(p_{\mathrm{sig}}-p_{D^{*}}-p_{\ell}\right)^{2} \sim p_{\nu}^{2}=0
$$

New Developments in exclusive $\left|V_{u b}\right|$

First measurement with $B_{s} \rightarrow K \mu \bar{\nu}_{\mu}$

LHCb presented a year ago a spectacular first measurement of exclusive $\left|V_{u b}\right| /\left|V_{c b}\right|$ from B_{s} decays

Small taste of what there is to come from both experiments !

First observation of the decay $B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$ \& meas. of $\left|V_{u b}\right| /\left|V_{c b}\right|$ [Phys.Rev.Lett. 126 (2021) 8, 081804, arXiv:2012.05143]

First glimpse at $\left|V_{u b}\right|$ in $B^{0} \rightarrow \pi^{-} \ell^{+} \nu_{\ell}$ with Belle II data [Preliminary]

Directly aim to measure $\left|V_{u b}\right| /\left|V_{c b}\right|$ via the ratio

$$
\begin{aligned}
\mathscr{R}=\frac{\mathscr{B}\left(B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}\right)}{\mathscr{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}\right)}=\frac{N_{K}}{N_{D_{s}}} \frac{\epsilon_{D_{s}}}{\epsilon_{K}} \times \mathscr{B}\left(D_{s}^{-} \rightarrow K^{+} K^{-} \pi^{-}\right) \\
\# \text { efficiency ratio signal / } \\
\text { normalization events }
\end{aligned}
$$

Again use corrected mass $m_{\text {corr }}$ to separate signal from background and normalization:

$m_{\text {corr }}=\sqrt{m^{2}(Y \mu)+p_{\perp}^{2}(Y \mu)}+p_{\perp}(Y \mu) \quad$ with $\quad Y=K^{-}, D_{s}^{-}$
 [Phys.Rev.Lett. 126 (2021) 8, 081804, arXiv:2012.05143]

Extract \mathscr{R} at low and high $q^{2}=\left(p_{B}-p_{K}\right)^{2}$

$$
q^{2}<7 \mathrm{GeV}^{2}
$$

Reconstructed with hadronic tagging and using 189.3/fb

Fit $\quad m_{\text {miss }}^{2}=\left(p_{\text {sig }}-p_{\pi}-p_{\ell}\right)^{2} \sim p_{\nu}^{2}=0$
in 3 bins of q^{2} to separate signal from background

Reconstructed with hadronic tagging

 and using 189.3/fb

Form Factor $\&\left|V_{u b}\right|$ fit:

$\longrightarrow\left|V_{u b}\right| \times 10^{3}=3.88 \pm 0.45$
with LQCD data from FNAL/MILC
Phys.Rev.D 92 (2015) 1, 014024, [arXiv: 1503.07839]

Summary

Numbers from new HFLAV 2021 report (will appear soon)

Summary

Summary

Summary

Summary

He may look cute, but that might be deceiving...
... the long-standing discrepancy is not going away

We need to tackle this problem:

- There are three culprits that can cause this:
- Experimental Problem / Theory Problem / New Physics

We need new experimental and theory results that challenge what we think we know

Backup slides

Likelihood combination with

Exclusive $\left|V_{u b}\right|$

 systematic Nuisance Parametersof all measurements

Now also available for $B \rightarrow \rho / \omega \ell \bar{\nu}_{\ell}$:
Plan to release public code for all of these

	$\mathcal{B}\left(B \rightarrow X \ell \bar{\nu}_{\ell}\right)(\%)$	$\mathcal{B}\left(B \rightarrow X_{c} \ell \bar{\nu}_{\ell}\right)(\%)$	In Average
Belle [62] $E_{\ell}>0.6 \mathrm{GeV}$	-	10.54 ± 0.31	$\sqrt{ }$
Belle [62] $E_{\ell}>0.4 \mathrm{GeV}$	-	10.58 ± 0.32	
CLEO [64] incl.	10.91 ± 0.26	10.72 ± 0.26	
CLEO [64] $E_{\ell}>0.6$	10.69 ± 0.25	10.50 ± 0.25	$\sqrt{ }$
BaBar [61] incl.	10.34 ± 0.26	10.15 ± 0.26	$\sqrt{ }$
BaBar SL [63] $E_{\ell}>0.6 \mathrm{GeV}$	-	10.68 ± 0.24	$\sqrt{ }$
Our Average	-	10.48 ± 0.13	
Average Belle [62] \& BaBar [63]	-	10.63 ± 0.19	
$\left(E_{\ell}>0.6 \mathrm{GeV}\right)$			

Table 2: Available measurements of the inclusive $B \rightarrow X \ell \bar{\nu}_{\ell}$ and $B \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ branching fractions, extrapolated to the full region using the correction factors in (34). The χ^{2} of our average with respect to the included measurements is 2.2 , corresponding to a p-value of 52%. We do not include [65], as the analysis does not quote a partial branching fraction corrected for FSR radiation.
$\left|\mathrm{V}_{\mathrm{ub}}\right|$ Measurements over Time

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ Measurements over Time

$\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ modelling

- Update excl. branching ratios to PDG 2020 and the masses and widths of D** $^{* *}$ decays
- Generate additional MC samples to fill the gap between the exclusive \& inclusive measurement (assign 100\% BR uncertainty in systematics covariance matrix)

BR	B^{+}	B^{0}			
$B \rightarrow X_{c} \ell^{+} \nu_{\ell}$					
$B \rightarrow D \ell^{+} \nu_{\ell} \quad \mathrm{D}, \mathrm{D} *$	$(2.5 \pm 0.1) \times 10^{-2}$	$(2.3 \pm 0.1) \times 10^{-2}$			
$B \rightarrow D^{*} \ell^{+} \nu_{\ell}$	$(5.4 \pm 0.1) \times 10^{-2}$	$(5.1 \pm 0.1) \times 10^{-2}$			
$\begin{aligned} B & \rightarrow D_{0}^{*} \ell^{+} \nu_{\ell} \\ (& \rightarrow D \pi) \end{aligned}$	$(0.420 \pm 0.075) \times 10^{-2}$	$(0.390 \pm 0.069) \times 10^{-2}$	BR	B^{+}	B^{0}
$\begin{aligned} B & \rightarrow D_{1}^{*} \ell^{+} \nu_{\ell} \\ (& \left(D^{*} \pi\right) \end{aligned}$	$(0.423 \pm 0.083) \times 10^{-2}$	$(0.394 \pm 0.077) \times 10^{-2}$	$B \rightarrow D_{0}^{*} \ell^{+} \nu_{\ell}$	$(0.03 \pm 0.03) \times 10^{-2}$	$(0.03 \pm 0.03) \times 10^{-2}$
$\begin{gathered} B \rightarrow D_{1} \ell^{+} \nu_{\ell} \\ \left(\rightarrow D^{*} \pi\right) \end{gathered} \quad D * *$	$(0.422 \pm 0.027) \times 10^{-2}$	$(0.392 \pm 0.025) \times 10^{-2}$	$\begin{aligned} & (\hookrightarrow D \pi \pi) \\ & B \rightarrow D_{1}^{*} \ell^{+} \nu_{\ell} \end{aligned}$	$(0.03 \pm 0.03) \times 10^{-2}$	$(0.03 \pm 0.03) \times 10^{-2}$
$B \rightarrow D_{2}^{*} \ell^{+} \nu_{\ell}$	$(0.116 \pm 0.011) \times 10^{-2}$	$(0.107 \pm 0.010) \times 10^{-2}$	$(\rightarrow D \pi \pi)$		
$\begin{gathered} \left(\hookrightarrow D^{*} \pi\right) \\ B \rightarrow D_{2}^{*} \ell^{+} \nu_{\ell} \end{gathered}$	$(0.178 \pm 0.024) \times 10^{-2}$	$(0.165 \pm 0.022) \times 10^{-2}$	$\begin{gathered} B \rightarrow D_{0}^{*} \pi \pi \ell^{+} \nu_{\ell} \\ \left(\hookrightarrow D^{*} \pi \pi\right) \end{gathered}$	$(0.108 \pm 0.051) \times 10^{-2}$	$(0.101 \pm 0.048) \times 10^{-2}$
$(\hookrightarrow D \pi)$ $\rho\left(D_{2}^{*} \rightarrow D^{*} \pi, D_{2}^{*} \rightarrow D \pi\right)=0.693$			$\begin{aligned} & \left(\hookrightarrow D^{*} \pi \pi\right) \\ & B \rightarrow D_{1}^{*} \pi \pi \ell^{+} \nu_{\ell} \end{aligned}$	$(0.108 \pm 0.051) \times 10^{-2}$	$(0.101 \pm 0.048) \times 10^{-2}$
$\begin{array}{cc} B \rightarrow D_{1} \ell^{+} \nu_{\ell} \\ (\leftrightarrow D \pi \pi) \end{array} \quad \text { Gap }$	$(0.242 \pm 0.100) \times 10^{-2}$	$(0.225 \pm 0.093) \times 10^{-2}$		$(0.396+0.396) \times 10^{-2}$	$(0.399+0.399) \times 10^{-2}$
$B \rightarrow D \pi \pi \ell^{+} \nu_{\ell}$	$(0.06 \pm 0.06) \times 10^{-2}$	$(0.06 \pm 0.06) \times 10^{-2}$			
$B \rightarrow D^{*} \pi \pi \ell^{+} \nu_{\ell}$ $B \rightarrow D^{+}{ }^{+}$	$(0.216 \pm 0.102) \times 10^{-2}$	$(0.201 \pm 0.095) \times 10^{-2}$	$(\hookrightarrow D \eta)$ $B \rightarrow D_{1}^{*} \ell^{+} \nu_{\ell}$		
$B \rightarrow D \eta \ell^{+} \nu_{\ell}$ $B \rightarrow D^{*} \eta \ell^{+} \nu_{\ell}$	$(0.396 \pm 0.396) \times 10^{-2}$ $(0.396 \pm 0.396) \times 10^{-2}$	$(0.399 \pm 0.399) \times 10^{-2}$ $(0.399 \pm 0.399) \times 10^{-2}$	$\begin{gathered} B \rightarrow D_{1}^{*} \ell^{+} \nu_{\ell} \\ \left(\mapsto D^{*} \eta\right) \end{gathered}$	$(0.396 \pm 0.396) \times 10^{-2}$	$(0.399 \pm 0.399) \times 10^{-2}$

Fit for partial BFs

Subtraction of bkg in fit with coarse binning to minimize X_{u} modelling dependence (low mx, high q^{2})

$$
\mathcal{L}=\prod_{i}^{\text {bins }} \mathcal{P}\left(n_{i} ; \nu_{i}\right) \times \prod_{k} \mathcal{G}_{k}
$$

Signal and Bkg shape errors included in Fit via NPs

Unfold measured yields to 3 phase-space regions:

$\left|V_{u b}\right|=\sqrt{\frac{\Delta \mathcal{B}\left(B \rightarrow X_{u} \ell^{+} \nu_{\ell}\right)}{\tau_{B} \cdot \Delta \Gamma\left(B \rightarrow X_{u} \ell^{+} \nu_{\ell}\right)}}$

$$
\left|V_{u b}\right|=(3.67 \pm 0.09 \pm 0.12) \times 10^{-3}
$$

Stability as a function of BDT cut:

Post-fit $N_{\pi^{+}}$distribution:

Arithmetic average:

$$
\left|V_{u b}\right|=(4.10 \pm 0.09 \pm 0.22 \pm 0.15) \times 10^{-3}
$$

CKM Unitarity:
$\left|V_{u b}\right|=\left(3.62_{-0.08}^{+0.11}\right) \times 10^{-3}$

Into the tool shed: EvtGen \& Pythia8

Many analyses need generic B-Meson decay samples

* Pythia8 hadronized modes make up ca. 48\% (!) of all simulated decays

1594	\# Lam_c x / Sigma_c X 4.0 \%				
1595	\#				
1596	0.010520663 anti-cd_0 ud_0			PYTHIA	$23 ;$
1597	0.021041421 anti-cd_1 ud_1			PYTHIA 23;	
1598					
1599	\# Xi_c x 2.5\%				
1600	\#				
1601	0.002869298 anti-cs_0 ud_0			PYTHIA	23;
1602	0.005738595 anti-cs_1 ud_1			PYTHIA	$23 ;$
1603					
1604	0.258091538 u	anti-d	anti-c d	PYTHIA	48;
1605	0.043995612 u	anti-d	anti-c d	PYTHIA	13;
1606	0.020084989 u	anti-s	anti-c d	PYTHIA	13;
1607	0.017215691 u	anti-c	anti-d d	PYTHIA	48;
1608	0.000860770 u	anti-c	anti-s d	PYTHIA	48 ;
1609	\#lange - try to crank up the psi production...				
1610	0.070775534 c	anti-s	anti-c d	PYTHIA	13;
1611	0.005738595 c	anti-d	anti-c d	PYTHIA	13;
1612	0.002869298 u	anti-d	anti-u d	PYTHIA	48;
1613	0.003825730 c	anti-s	anti-u d	PYTHIA	48;
1614	\# JGS 11/5/02 This and similar a few lines above have been divided by two				
1615	\# to solve a double-counting problem for this channel				
1616	0.001960649 u	anti-u	anti-d d	PYTHIA	48;
1617	0.000066973 d	anti-d	anti-d d	PYTHIA	48;
1618	0.000086068 s	anti-s	anti-d d	PYTHIA	48;
1619	0.002104095 u	anti-u	anti-s d	PYTHIA	48;
1620	0.001721541 d	anti-d	anti-s d	PYTHIA	48;
1621	0.001434649 s	anti-s	anti-s d	PYTHIA	48;
1622	0.004782163 anti-s	d		PYTHIA	32;

Modes for Matrix Element Processing

Some decays can be treated better than what pure phase space allows, by reweighting with appropriate matrix e signaled by a nonvanishing memode () value for a decay mode in the particle data table. The list of allowed poss introduced, and most have been moved for better consistency. Here is the list of currently allowed meMode() co

- 0 : pure phase space of produced particles ("default"); input of partons is allowed and then the partonic con
- 1 : omega and phi \rightarrow pi+ pi- piO
- 2 : polarization in $V \rightarrow P S+P S(V=$ vector, $P S=$ pseudoscalar $)$, when V is produced by $P S \rightarrow P S+V$ or F
- 11 : Dalitz decay into one particle, in addition to the lepton pair (also allowed to specify a quark-antiquark p i
- 12 : Dalitz decay into two or more particles in addition to the lepton pair
- 13 : double Dalitz decay into two lepton pairs
- 21 : decay to phase space, but weight up neutrino_tau spectrum in tau decay
- 22 : weak decay; if there is a quark spectator system it collapses to one hadron; for leptonic/semileptonic d
- 23 : as 22 , but require at least three particles in decay
- 31 : decays of type $B \rightarrow$ gamma X, very primitive simulation where X is given in terms of its flavour content spectrum is weighted up relative to pure phase space
- 42-50 : turn partons into a random number of hadrons, picked according to a Poissonian with average val new try with another multiplicity if the sum of daughter masses exceed the mother one
- 52-60 : as 42-50, with multiplicity between code - 50 and 10 , but avoid already explicitly listed non-parto
- $62-70$: as $42-50$, but fixed multiplicity code -60
- 72-80 : as 42-50, but fixed multiplicity code-70, and avoid already explicitly listed non-partonic channel
- 91 : decay to q qbar or $g g$, which should shower and hadronize
- 92 : decay onium to $g g$ g or $g g$ gamma (with matrix element), which should shower and hadronize
- 93 : decay of colour singlet to q qbar plus another singlet, flat in phase space (and arbitrarily ordered), whe
- 94 : same as 93 , but weighted with V-A weak matrix element if the decay chain is of the type neutrino Irarr;
- 100 - : reserved for the description of partial widths of resonances

Combined Extractions

Interesting if heavy quark symmetry inspired Form Factors are used:

$$
\hat{h}(w)=h(w) / \xi(w) \longleftarrow \quad \begin{aligned}
& \text { Leading Isgur-Wise } \\
& \text { function }
\end{aligned}
$$

This links dynamics of $B \rightarrow D \ell \bar{\nu}_{\ell} \& B \rightarrow D^{*} \ell \bar{\nu}_{\ell}$

Example fit for leading IW function and sub-leading parameters

$\left\|V_{c b}\right\| \times 10^{3}$	38.8 ± 1.2
$\mathcal{G}(1)$	1.055 ± 0.008
$\mathcal{F}(1)$	0.904 ± 0.012
$\bar{\rho}_{*}^{2}$	1.17 ± 0.12
$\hat{\chi}_{2}(1)$	-0.26 ± 0.26
$\hat{\chi}_{2}^{\prime}(1)$	0.21 ± 0.38
$\hat{\chi}_{3}^{\prime}(1)$	0.02 ± 0.07
$\eta(1)$	0.30 ± 0.04
$\eta^{\prime}(1)$	$0($ fixed $)$
$m_{b}^{1 S}[\mathrm{GeV}]$	4.70 ± 0.05
$\delta m_{b c}[\mathrm{GeV}]$	3.40 ± 0.02

LHCb Systematics

$$
B_{s} \rightarrow K \mu \bar{\nu}_{\mu}
$$

Uncertainty	All q^{2}	Low q^{2}	High q^{2}
Tracking	2.0	2.0	2.0
Trigger	1.4	1.2	1.6
Particle identification	1.0	1.0	1.0
$\sigma\left(m_{\text {corr }}\right)$	0.5	0.5	0.5
Isolation	0.2	0.2	0.2
Charged BDT	0.6	0.6	0.6
Neutral BDT	1.1	1.1	1.1
q^{2} migration	\ldots	2.0	2.0
Efficiency	1.2	1.6	1.6
Fit template	-2.3	+1.8	+3.0
Total	-.3 .0		

$$
B_{s} \rightarrow D_{s}^{(*)} \mu \bar{\nu}_{\mu}
$$

Source	Uncertainty															
	CLN parametrization						BGL parametrization								$\begin{gathered} \mathcal{R} \\ {\left[10^{-1}\right]} \\ \hline \end{gathered}$	$\begin{gathered} \mathcal{R}^{*} \\ {\left[10^{-1}\right]} \\ \hline \end{gathered}$
	$\begin{gathered} \left\|V_{c b}\right\| \\ {\left[10^{-3}\right]} \end{gathered}$	$\begin{gathered} \rho^{2}\left(D_{s}^{-}\right) \\ {\left[10^{-1}\right]} \end{gathered}$	$\begin{gathered} \mathcal{G}(0) \\ {\left[10^{-2}\right]} \end{gathered}$	$\begin{gathered} \rho^{2}\left(D_{s}^{*-}\right) \\ {\left[10^{-1}\right]} \end{gathered}$	$\begin{gathered} R_{1}(1) \\ {\left[10^{-1}\right]} \end{gathered}$	$\begin{gathered} R_{2}(1) \\ {\left[10^{-1}\right]} \end{gathered}$	$\begin{gathered} \left\|V_{c b}\right\| \\ {\left[10^{-3}\right]} \end{gathered}$	$\begin{gathered} d_{1} \\ {\left[10^{-2}\right]} \end{gathered}$	$\begin{gathered} d_{2} \\ {\left[10^{-1}\right]} \end{gathered}$	$\begin{gathered} \mathcal{G}(0) \\ {\left[10^{-2}\right]} \end{gathered}$	$\begin{gathered} b_{1} \\ {\left[10^{-1}\right]} \end{gathered}$	$\begin{gathered} c_{1} \\ {\left[10^{-3}\right]} \end{gathered}$	$\begin{gathered} a_{0} \\ {\left[10^{-2}\right]} \end{gathered}$	$\left[10^{-1}\right]$		
$f_{s} / f_{d} \times \mathcal{B}\left(D_{s}^{-} \rightarrow K^{+} K^{-} \pi^{-}\right)(\times \tau)$	0.8	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.4	0.4
$\mathcal{B}\left(D^{-} \rightarrow K^{-} K^{+} \pi^{-}\right)$	0.5	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.3
$\mathcal{B}\left(D^{*-} \rightarrow D^{-} X\right)$	0.2	0.0	0.1	0.0	0.1	0.0	0.1	0.0	0.0	0.1	0.0	0.2	0.0	0.3	-	0.2
$\mathcal{B}\left(B^{0} \rightarrow D^{-} \mu^{+} \nu_{\mu}\right)$	0.4	0.0	0.3	0.1	0.2	0.1	0.5	0.1	0.0	0.1	0.1	0.4	0.1	0.7	-	-
$\mathcal{B}\left(B^{0} \rightarrow D^{*-} \mu^{+} \nu_{\mu}\right)$	0.3	0.0	0.2	0.1	0.1	0.1	0.2	0.0	0.0	0.1	0.1	0.3	0.1	0.4	-	-
$m\left(B_{s}^{0}\right), m\left(D^{* *-}\right)$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-	-
$\eta_{\text {EW }}$	0.2	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-	-
$h_{A_{1}}(1)$	0.3	0.0	0.2	0.1	0.1	0.1	0.3	0.0	0.0	0.1	0.1	0.3	0.1	0.5	-	-
External inputs (ext)	1.2	0.0	0.4	0.1	0.2	0.1	1.2	0.1	0.0	0.1	0.1	0.6	0.1	0.8	0.5	0.5
$D_{(s)}^{-} \rightarrow K^{+} K^{-} \pi^{-}$model	0.8	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.4
Background	0.4	0.3	2.2	0.5	0.9	0.7	0.1	0.5	0.2	2.3	0.7	2.0	0.5	2.0	0.4	0.6
Fit bias	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.2	0.4	0.2	0.4	0.0	0.0
Corrections to simulation	0.0	0.0	0.5	0.0	0.1	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.0
Form-factor parametrization	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0	0.1
Experimental (syst)	0.9	0.3	2.2	0.5	0.9	0.7	0.9	0.5	0.2	2.3	0.7	2.1	0.5	2.0	0.6	0.7
Statistical (stat)	0.6	0.5	3.4	1.7	2.5	1.6	0.8	0.7	0.5	3.4	0.7	2.2	0.9	2.6	0.5	0.5

