

First row CKM unitarity

Chien-Yeah Seng

Helmholtz-Institut für Strahlen- und Kernphysik and

Bethe Center for Theoretical Physics, Universität Bonn

cseng@hiskp.uni-bonn.de

The 2022 Conference on Flavor Physics and CP Violation (FPCP2022) 23 May, 2022

Many unresolved problems call for physics beyond the Standard Model (BSM)

Dark energy, dark matter

Matter-antimatter asymmetry

Unification of forces

Hierarchy problem

Beta decays had been crucial in the shaping of Standard Model (SM)

1930: Neutrino postulation by Pauli

1956: Wu's experiment confirmed **P-violation** in weak interaction (1957 Nobel Prize by Lee and Yang)

1957: Feynman, Gell-Mann, Sudarshan and Marshak: V-A structure in the charged weak interaction

1963: **2*2 unitary matrix** by Cabibbo to mix the $\Delta S=0$ and $\Delta S=1$ charged weak current

1973: Kobayashi and Maskawa extended the matrix to 3*3 (the CKM matrix), introduced the 3rd generation quarks (Nobel Prize 2008)

$$\psi_{d,f} = \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{f} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{m}$$

Beta decays place one of the most stringent tests of SM through precision measurements of the first-row CKM matrix elements V_{ud} and V_{us}

 V_ud

	$ V_{ud} $
Superallowed nuclear decays $(0^+ \to 0^+)$	0.97373(31)
Free n decay	0.97377(90)
Mirror nuclei decays	0.9739(10)
Pion semileptonic decay (π_{e3})	0.9740(28)

 V_{us}

	$ V_{us} $
Kaon semileptonic decays $(K_{\ell 3})$	0.22308(55)
Tau decays	0.2221(13)
Hyperon decays	0.2250(27)

	$ V_{us}/V_{ud} $
K/π leptonic decays $(K_{\mu 2}/\pi_{\mu 2})$	0.23131(51)
K/π semileptonic decays $(K_{\ell 3}/\pi_{e3})$	0.22908(87)

Several anomalies are recently observed in the first-row CKM matrix elements!

SM prediction:
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

"Cabibbo Angle Anomaly (CAA)" $\sim 3\sigma$

Several anomalies are recently observed in the first-row CKM matrix elements!

SM prediction:
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

Several anomalies are recently observed in the first-row CKM matrix elements!

SM prediction:
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

A concrete example: First-row CKM unitarity with $|V_{ud}|$ from 0⁺ beta decay and $|V_{us}|$ from K_{l3} decay

$$|V_{ud}|_{0+}^{2} + |V_{us}|_{K_{\ell 3}}^{2} + |V_{ub}|^{2} - 1 = -0.0021(7)$$

SOURCES OF UNCERTAINTY:

$ V_{ud} _{0+}^2 + V_{us} _{K_{\ell 3}}^2 - 1$	-2.1×10^{-3}
$\delta V_{ud} _{0+}^2$, exp	2.1×10^{-4}
$\delta V_{ud} _{0+}^2, \mathbf{RC}$	1.8×10^{-4}
$\delta V_{ud} _{0+}^2, \mathbf{NS}$	5.3×10^{-4}
$\delta V_{us} _{K_{\ell 3}}^2, \exp+$ th	1.8×10^{-4}
$\delta V_{us} _{K_{\ell 3}}^2$, lat	1.7×10^{-4}
Total uncertainty	6.5×10^{-4}
Significance level	3.2σ

A concrete example: First-row CKM unitarity with $|V_{ud}|$ from 0⁺ beta decay and $|V_{us}|$ from K_{l3} decay

$$|V_{ud}|_{0+}^{2} + |V_{us}|_{K_{\ell 3}}^{2} + |V_{ub}|^{2} - 1 = -0.0021(7)$$

SOURCES OF UNCERTAINTY:

$$\delta |V_{ud}|_{0+}^2, \, \exp$$
:

Experimental uncertainties in the half-lives of the superallowed beta decays

	$ V_{ud} _{0^+}^2 + V_{us} _{K_{\ell 3}}^2 - 1$	-2.1×10^{-3}
•	$\delta V_{ud} _{0+}^2$, exp	2.1×10^{-4}
	$\delta V_{ud} _{0+}^2$, RC	1.8×10^{-4}
	$\delta V_{ud} _{0^+}^2, { m NS}$	5.3×10^{-4}
	$\delta V_{us} _{K_{\ell 3}}^2, \exp+ h$	1.8×10^{-4}
	$\delta V_{us} _{K_{\ell 3}}^2, { m lat}$	1.7×10^{-4}
	Total uncertainty	6.5×10^{-4}
	Significance level	3.2σ

A concrete example: First-row CKM unitarity with $|V_{ud}|$ from 0⁺ beta decay and $|V_{us}|$ from K_{l3} decay

$$|V_{ud}|_{0+}^{2} + |V_{us}|_{K_{\ell 3}}^{2} + |V_{ub}|^{2} - 1 = -0.0021(7)$$

SOURCES OF UNCERTAINTY:

$$\delta |V_{ud}|_{0+}^2$$
, **RC**:

Theory uncertainties in the single-nucleon radiative corrections (RC)

-2.1×10^{-3}
2.1×10^{-4}
1.8×10^{-4}
5.3×10^{-4}
1.8×10^{-4}
1.7×10^{-4}
6.5×10^{-4}
3.2σ

A concrete example: First-row CKM unitarity with $|V_{ud}|$ from 0⁺ beta decay and $|V_{us}|$ from K_{l3} decay

$$|V_{ud}|_{0+}^{2} + |V_{us}|_{K_{\ell 3}}^{2} + |V_{ub}|^{2} - 1 = -0.0021(7)$$

SOURCES OF UNCERTAINTY:

$$\delta |V_{ud}|_{0+}^2$$
, **NS**:

Theory uncertainties in the nuclear-structure (NS) corrections in superallowed beta decays

$ V_{ud} _{0+}^2 + V_{us} _{K_{\ell 3}}^2 - 1$	-2.1×10^{-3}
$\delta V_{ud} _{0+}^2$, exp	2.1×10^{-4}
$\delta V_{ud} _{0+}^2, \mathbf{RC}$	1.8×10^{-4}
$\delta V_{ud} _{0+}^2, \mathbf{NS}$	5.3×10^{-4}
$\delta V_{us} _{K_{\ell 3}}^2, \exp+$ th	1.8×10^{-4}
$\delta V_{us} _{K_{\ell 3}}^2$, lat	1.7×10^{-4}
Total uncertainty	6.5×10^{-4}
Significance level	3.2σ

A concrete example: First-row CKM unitarity with $|V_{ud}|$ from 0⁺ beta decay and $|V_{us}|$ from K_{l3} decay

$$|V_{ud}|_{0+}^{2} + |V_{us}|_{K_{\ell 3}}^{2} + |V_{ub}|^{2} - 1 = -0.0021(7)$$

SOURCES OF UNCERTAINTY:

$$\delta |V_{us}|_{K_{\ell 3}}^2$$
, exp+th:

Combined experimental + theory (non-lattice) uncertainties in the K_{13} decay rate

-2.1×10^{-3}
2.1×10^{-4}
1.8×10^{-4}
5.3×10^{-4}
1.8×10^{-4}
1.7×10^{-4}
6.5×10^{-4}
3.2σ

A concrete example: First-row CKM unitarity with $|V_{ud}|$ from 0⁺ beta decay and $|V_{us}|$ from K_{l3} decay

$$|V_{ud}|_{0+}^{2} + |V_{us}|_{K_{\ell 3}}^{2} + |V_{ub}|^{2} - 1 = -0.0021(7)$$

SOURCES OF UNCERTAINTY:

$$\delta |V_{us}|_{K_{\ell 3}}^2$$
, lat:

Theory uncertainties in the lattice QCD calculation of the $K\pi$ form factor at t=0

$ V_{ud} _{0+}^2 + V_{us} _{K_{\ell 3}}^2 - 1$	-2.1×10^{-3}
$\delta V_{ud} _{0+}^2$, exp	2.1×10^{-4}
$\delta V_{ud} _{0+}^2, \mathbf{RC}$	1.8×10^{-4}
$\delta V_{ud} _{0+}^2, \mathbf{NS}$	5.3×10^{-4}
$\delta V_{us} _{K_{\ell 3}}^2, \exp+$ th	1.8×10^{-4}
$\delta V_{us} _{K_{\ell 3}}^2$, lat	1.7×10^{-4}
Total uncertainty	6.5×10^{-4}
Significance level	3.2σ

Inputs in nucleon/ nuclear sector (V_{ud})

Primary source of uncertainty: the "single-nucleon axial γW-box diagram"

Main issue:Strong interactions governed by Quantum Chromodynamics (QCD) become non-perturbative at the hadronic scale (Q²~1 GeV²)

Major theory challenge in the past 4 decades

Sirlin, 1978 Rev.Mod.Phys

Pre-2018 treatment: Divide the loop integral into different regions of Q²:

- Large-Q²: perturbative QCD
- Small-Q²: elastic form factors
- Intermediate Q²: Interpolating function

Year 2018: Dispersion relation (DR) treatment --- relate the loop integral to experimentally-measurable structure functions CYS, Gorchtein, Patel and Ramsey-Musolf, 2018 PRL

$$\Box_{\gamma W}^{V} = \frac{\alpha_{em}}{\pi \mathring{g}_{V}} \int_{0}^{\infty} \frac{dQ^{2}}{Q^{2}} \frac{M_{W}^{2}}{M_{W}^{2} + Q^{2}} \int_{0}^{1} dx \frac{1 + 2r}{(1 + r)^{2}} F_{3}^{(0)}(x, Q^{2})$$

Data input: Parity-odd structure function F₃ from neutrino-nucleus scattering

New treatment led to a significant change of |Vud|

|Vud|:
$$0.97420(21) \rightarrow 0.97370(14)$$

Pre-2018 2018

unveiling the tension in the top-row CKM unitarity

Confirmation by independent studies:

Czarnecki, Marciano and Sirlin, 2019 PRD CYS, Feng, Gorchtein and Jin, 2020 PRD Hayen, 2021 PRD Shiells, Blunden and Melnitchouk, 2021 PRD

Major limiting factor of the DR treatment: low quality of the neutrino data in the most interesting region: $Q^2 \sim 1 \text{GeV}^2$

Ongoing program: Calculate the box diagram directly with lattice QCD

Year 2020: First realistic lattice QCD calculation of the simpler pion axial γW-box diagram

Feng, Gorchtein, Jin, Ma and CYS, 2020 PRL

Consequences:

- Significant reduction of the theory uncertainty in **pion** semileptonic decay (π_{e3})
- Indirect implications on the free-neutron axial γW-box diagram

CYS, Feng, Gorchtein and Jin, 2020 PRD

Major limiting factor of the DR treatment: low quality of the neutrino data in the most interesting region: $Q^2 \sim 1 \text{GeV}^2$

Ongoing program: Calculate the box diagram directly with lattice QCD

Neutron axial γ W-box diagram is more complicated, but on the way.

(R. Gupta, Rare Processes and Precision Frontier Townhall Meeting, 2020)

Possible alternative approach using Feynman-Hellmann theorem (FHT)

CYS and Meißner, 2019 PRL

Superallowed $0^+ \rightarrow 0^+$ nuclear beta decays provides the best measurement of V_{ud}

Advantages:

- 1. Conserved vector current (CVC) at tree level
- 2. Large number of measured transitions, with 15 among them whose lifetime precision is 0.23% or better. Huge gain in statistics.

$T_Z = -1$
$^{10}\mathrm{C} \rightarrow ^{10}\mathrm{B}$
$^{14}\mathrm{O}{ ightarrow}^{14}\mathrm{N}$
$^{22}\text{Mg}{\rightarrow}^{22}\text{Na}$
$^{26}\text{Si} \rightarrow ^{26}\text{Al}$
$^{34}\mathrm{Ar}{ ightarrow}^{34}\mathrm{Cl}$
$^{38}\mathrm{Ca}{ ightarrow}^{38}\mathrm{K}$
$T_Z = 0$
26m Al \rightarrow ²⁶ Mg
$^{34}\text{Cl} \rightarrow ^{34}\text{S}$
$^{38m}\mathrm{K} \rightarrow ^{38}\mathrm{Ar}$
$^{42}\mathrm{Sc} \rightarrow ^{42}\mathrm{Ca}$
$^{46}V\rightarrow^{46}Ti$
$^{50}\mathrm{Mn}{ ightarrow}^{50}\mathrm{Cr}$
$^{54}\mathrm{Co} \rightarrow ^{54}\mathrm{Fe}$
$^{62}\mathrm{Ga}{ ightarrow}^{62}\mathrm{Zn}$
$^{74}\mathrm{Rb}{ ightarrow}^{74}\mathrm{Kr}$

Superallowed $0^+ \rightarrow 0^+$ nuclear beta decays provides the best measurement of V_{ud}

Master formula:

$$|V_{ud}|^2 = \frac{2984.43 \, s}{\mathcal{F}t \left(1 + \Delta_R^V\right)}.$$

Single-nucleon RC

Corrected ft (half-life*statistical function)-value:

Corrected ft-value: nucleus-independent

$\delta_{\rm NS}$: nuclear modifications of the free-nucleon inner RC

LARGEST source of uncertainty in V_{ud}!

 The low-energy absorption spectrum is distorted by nuclear corrections

• An important contribution from the quasielastic nucleons was not properly accounted for in previous nuclear-model calculations, which results in the large uncertainty in $\delta_{\rm NS}$.

N

Ab-initio nuclear theory calculations of δ_{NS} urgently needed!

CYS, Gorchtein and Ramsey-Musolf, 2019 PRD; Gorchtein, 2019 PRL

δ_c : isospin-breaking (ISB) corrections to nuclear wavefunctions

Essential to **align the Ft-values** of different superallowed transitions.

It turns out that such alignment is only achieved within **some specific choices of nuclear models** (e.g. Woods Saxon), but not the others.

Hardy and Towner, 2020 PRC

Inputs in Kaon/pion sector (V_{us} and V_{us}/V_{ud})

Kaon/pion leptonic decay $(K_{\mu 2}/\pi_{\mu 2})$

$$\frac{|V_{us}|f_{K^+}}{|V_{ud}|f_{\pi^+}} = \left[\frac{\Gamma_{K_{\mu 2}} M_{\pi^+}}{\Gamma_{\pi_{\mu 2}} M_{K^+}}\right]^{1/2} \frac{1 - m_{\mu}^2 / M_{\pi^+}^2}{1 - m_{\mu}^2 / M_{K^+}^2} \left(1 - \delta_{\rm EM}/2\right)$$

"axial ratio" R Neufeld, 2011 PLB

Marciano, 2004 PRL; Cirigliano and Neufeld. 2011 PLB

Lattice QCD inputs: K^+/π^+ decay constants

Electromagnetic RC $\delta_{\rm EM}=\delta_{\rm EM}^K-\delta_{\rm EM}^\pi=-0.0069(17)$ Knecht et al., 2000 EPJC Cirigliano and Neufeld, 2011 PLB

Advantage: LECs cancel in the ratio

Direct lattice QCD calculation of the EMRC+isospin breaking correction (contained in the physical K^+/π^+ decay constants) consistent with ChPT result, with slightly lower uncertainty *Giusti et al, 2018 PRL*

Total:
$$|V_{us}/V_{ud}| = 0.23131(41)_{lat}(24)_{exp}(19)_{RC}$$

Master formula:

$$\Gamma_{K_{\ell 3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\text{EW}} |f_+^{K^0 \pi^-}(0)|^2 I_{K\ell}^{(0)} \left(1 + \delta_{\text{EM}}^{K\ell} + \delta_{\text{SU}(2)}^{K\pi}\right)$$

Measurements of **branching ratio** exist in all **six channels**:

 K_{e3}^L, K_{u3}^L : PLB632,43(2006), PRD70,092006(2004), ...

 K_{e3}^S : PLB653,145(2007), PLB636,173(2006), PLB535,37(2002), ... $K_{\mu3}^S$: PLB804,135378(2020)

 K_{e3}^+, K_{u3}^+ : JHEP02,098(2008), PRD6,1254(1972), ...

$$\Gamma_{K_{\ell 3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\text{EW}} |f_+^{K^0 \pi^-}(0)|^2 I_{K\ell}^{(0)} \left(1 + \delta_{\text{EM}}^{K\ell} + \delta_{\text{SU}(2)}^{K\pi}\right)$$

 C_{κ} : Known isospin factor

 S_{FW} : Short-distance electroweak RCs

$$S_{\rm EW} = 1.0232(3)$$

Marciano and Sirlin, 1993 PRL

Master formula:

$$\Gamma_{K_{\ell 3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\text{EW}} f_+^{K^0 \pi^-}(0) |^2 I_{K\ell}^{(0)} \left(1 + \delta_{\text{EM}}^{K\ell} + \delta_{\text{SU}(2)}^{K\pi} \right)$$

$$\mathbf{K}\pi$$
 form factor at t=0: $\left\langle \pi^{-}(p') \middle| J_{W}^{\mu} \middle| K^{0}(p) \right\rangle = f_{+}^{K^{0}\pi^{-}}(t)(p+p')^{\mu} + f_{-}^{K^{0}\pi^{-}}(t)(p-p')^{\mu}$

Lattice QCD inputs:

$$N_f = 2 + 1 + 1$$
 : $f_+(0) = 0.9698(17)$
 $N_f = 2 + 1$: $f_+(0) = 0.9677(27)$
 $N_f = 2$: $f_+(0) = 0.9560(57)(62)$

A slight change of 1% in the central value could lead to totally different conclusions on the V_{us} anomaly (K_{l3} — K_{u2} discrepancy)

FLAG 2021

Master formula:

$$\Gamma_{K_{\ell 3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\text{EW}} |f_+^{K^0 \pi^-}(0)| \mathcal{U}_{K\ell}^{(0)} \left(1 + \delta_{\text{EM}}^{K\ell} + \delta_{\text{SU}(2)}^{K\pi}\right)$$

$$\textbf{Phase-space factor:} \ \ I_{K\ell}^{(0)} = \int_{m_\ell^2}^{(M_K^2 - M_\pi)^2} \frac{dt}{M_K^8} \bar{\lambda}^{3/2} \Bigg(1 + \frac{m_\ell^2}{2t} \Bigg) \Bigg(1 - \frac{m_\ell^2}{t} \Bigg)^2 \Bigg[\bar{f}_+^2(t) + \frac{3m_\ell^2 \Delta_{K\pi}^2}{(2t + m_\ell^2)\bar{\lambda}} \bar{f}_0^2(t) \Bigg]$$

probes the **t-dependence** of the $K\pi$ form factors.

 $K\pi$ form factors

Obtained by fitting to the K_{13} Dalitz plot with specific parameterizations of f(t) (Taylor expansion, z-expansion, dispersive parameterization, pole parameterization ...)

> The **dispersive** parameterization currently quotes the smallest uncertainty:

Mode	Update
K^{0}_{e3}	0.15470(15)
K^+_{e3}	0.15915(15)
$K^0_{~\mu3}$	0.10247(15)
$K^+_{\mu 3}$	0.10553(16)

M. Moulson, in the 11th International Workshop on the **CKM Unitarity** Triangle, 2021

Master formula:

$$\Gamma_{K_{\ell 3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\text{EW}} |f_+^{K^0 \pi^-}(0)|^2 I_{K\ell}^{(0)} \left(1 + \delta_{\text{EM}}^{K\ell} + \delta_{\text{SU}(2)}^{K\pi}\right)$$

Long-distance electromagnetic RC

	$\delta^{K\ell}_{ m EM}$ "Sirlin's representation	, ChPT
K^0e	$11.6(2)_{\text{inel}}(1)_{\text{lat}}(1)_{\text{NF}}(2)_{e^2p^4}$	$9.9(1.9)_{e^2p^4}(1.1)_{LEC}$
K^+e	$2.1(2)_{\text{inel}}(1)_{\text{lat}}(4)_{\text{NF}}(1)_{e^2p^4}$	$1.0(1.9)_{e^2p^4}(1.6)_{LEC}$
$K^0\mu$	$15.4(2)_{\text{inel}}(1)_{\text{lat}}(1)_{\text{NF}}(2)_{\text{LEC}}(2)_{e^2p^4}$	$14.0(1.9)_{e^2p^4}(1.1)_{LEC}$
$K^+\mu$	$0.5(2)_{\text{inel}}(1)_{\text{lat}}(4)_{\text{NF}}(2)_{\text{LEC}}(2)_{e^2p^4}$	$0.2(1.9)_{e^2p^4}(1.6)_{LEC}$

Master formula:

$$\Gamma_{K_{\ell 3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\text{EW}} |f_+^{K^0 \pi^-}(0)|^2 I_{K\ell}^{(0)} \left(1 + \delta_{\text{EM}}^{K\ell} + \delta_{\text{SU}(2)}^{K\pi}\right)$$

ISB correction: presents only in the **K**⁺ channel by construction.

$$\delta^{K^+\pi^0}_{\mathrm{SU}(2)} \equiv \left(\frac{f_+^{K^+\pi^0}(0)}{f_+^{K^0\pi^-}(0)}\right)^2 - 1 = \frac{3}{2}\frac{1}{Q^2} \left[\frac{\hat{M}_K^2}{\hat{M}_\pi^2} + \frac{\chi_{p^4}}{2}\left(1 + \frac{m_s}{\hat{m}}\right)\right] \quad \text{(neglecting small EM contributions)}$$

$$Q^2 = (m_s^2 - \hat{m}^2)/(m_d^2 - m_u^2)$$

Most recent lattice QCD inputs: FLAG 2021

$$Q = 23.3(5)$$
, $m_s/\hat{m} = 27.42(12)$ $N_f = 2 + 1$

returns: $\delta_{SU(2)}^{K^+\pi^0} = 0.0457(20)$

Phenomenological inputs from $\eta \rightarrow 3\pi$ returns a somewhat larger value:

$$\delta_{\mathrm{SU}(2)}^{K^+\pi^0} = 0.0522(34)$$

Master formula:

$$\Gamma_{K_{\ell 3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\text{EW}} |f_+^{K^0 \pi^-}(0)|^2 I_{K\ell}^{(0)} \left(1 + \delta_{\text{EM}}^{K\ell} + \delta_{\text{SU}(2)}^{K\pi}\right)$$

Averaging over all six channels:

	$ V_{us}f_{+}^{K^{0}\pi^{-}}(0) $
$K_L e$	$0.21617(46)_{\text{exp}}(10)_{I_K}(4)_{\delta_{\text{EM}}}$
$K_S e$	$0.21530(122)_{\text{exp}}(10)_{I_K}(4)_{\delta_{\text{EM}}}$
K^+e	$0.21714(88)_{\text{exp}}(10)_{I_K}(21)_{\delta_{\text{SU}(2)}}(5)_{\delta_{\text{EM}}}$
$K_L \mu$	$0.21649(50)_{\mathrm{exp}}(16)_{I_K}(4)_{\delta_{\mathrm{EM}}}$
$K_S\mu$	$0.21251(466)_{\mathrm{exp}}(16)_{I_K}(4)_{\delta_{\mathrm{EM}}}$
$K^+\mu$	$0.21699(108)_{\text{exp}}(16)_{I_K}(21)_{\delta_{\text{SU}(2)}}(6)_{\delta_{\text{EM}}}$
Average: Ke	$0.21626(40)_K(3)_{HO}$
Average: $K\mu$	$0.21654(48)_K(3)_{HO}$
Average: tot	$0.21634(38)_K(3)_{HO}$

With Nf=2+1+1 lattice average of $f_{\downarrow}(0)$:

$$|V_{us}|_{K_{\ell 3}} = 0.22308(39)_{\text{lat}}(39)_K(3)_{\text{HO}}$$

Experimental uncertainties apparently dominate in all channels, but one still needs to scrutinize all the theory inputs to make sure the V_{us} anomaly does not come from some unexpected, large SM corrections.

CYS, Galviz, Gorchtein and Meißner, 2203.05217

Vector ratio R_v: A new avenue to determine V_{us}/V_{ud}

$$R_V = \frac{\Gamma(K_{\ell 3})}{\Gamma(\pi_{e3})} \qquad \text{K/}\pi \xrightarrow{\text{V}_{\text{us}}/\text{V}_{\text{ud}}} \stackrel{\pi}{\text{I}^+}$$

Czarnecki, Marciano and Sirlin, 2020 PRD

$$\left| \frac{V_{us} f_{K^+}}{V_{ud} f_{\pi^+}} \right| \, = \, 0.27600(29)_{\rm exp}(23)_{\rm RC} \; , \qquad \qquad$$
 from R_V
$$\left| \frac{V_{us} f_+^K(0)}{V_{ud} f_+^\pi(0)} \right| \, = \, 0.22216(64)_{{\rm BR}(\pi_{e3})}(39)_K(2)_{\tau_{\pi^+}}(1)_{{\rm RC}_\pi} \; , \qquad \qquad$$
 Theoretically cleaner!

Major limiting factor: π_{e3} branching ratio $BR(\pi_{e3}) = 1.038(6) \times 10^{-8}$ PIBETA, 2004 PRL + recent update

Next-generation experiment (PIONEER) may improve BR (π_{e3}) precision by a factor of 3 or more, making R_v competitive

Summary

- Several anomalies at the level $\sim 3\sigma$ have been observed in the measurements of the first-row CKM matrix elements V_{ud} and V_{us} in beta decay processes.
- **SM** theory inputs that require further improvements are:
 - V_{ud} sector: RC in single-nucleon and nuclear systems, ISB corrections in nuclear wavefunctions
 - V_{us} sector: Lattice inputs of <u>Kaon/pion decay constants</u> and <u>K π </u> form factor, <u>RC in leptonic and semileptonic kaon decays</u>, <u>K_{l3}</u> phase-space factor, <u>ISB corrections in K $^{\pm}$ semileptonic decays</u>
- Successful reduction of theory uncertainties above could increase the significance of the anomalies to more than 5σ
- Desirable future **experimental improvements**: $\underline{K}_{\underline{13}}$ and $\underline{\pi}_{\underline{e3}}$ branching ratios, neutron lifetime and $\underline{g}_{\underline{A}}$, ...