Probing BSM Physics in $B \rightarrow D^* \ell v$ using Monte Carlo Simulation

Quinn Campagna

Introduction

- There are many experimental anomalies that point towards possible NP in B→D*{v
- One of these is an anomaly in A^{μ}_{FB} for $B \rightarrow D^* \ell \nu$, indicating possible NP in the μ mode (Bobeth et al., Eur.Phys.J.C 81 (2021) 11, 984)
- There are several experimental analyses that can be done with current and projected data sets to test possible NP scenarios

Observable	SM Prediction	Measurement (WA)
	0.258 ± 0.005 [12]	$0.295 \pm 0.011 \pm 0.008$ [12]
	0.299 ± 0.003 [12]	$0.340 \pm 0.027 \pm 0.013$ [12]
$R_{J/\psi}^{ au/\mu}$	0.283 ± 0.048 [13]	$0.71 \pm 0.17 \pm 0.18$ [11]
$R_{D^*}^{\mu/e}$	~ 1.0	$1.04 \pm 0.05 \pm 0.01$ [14]

NP Monte Carlo

- Monte Carlo tools are useful for generating accurate theoretical predictions in realistic experimental environments
- In order to simulate NP scenarios, we have developed a new module for the EvtGen Monte Carlo tool
 - EvtGen previously has the SM module only for $B \rightarrow D^* \ell v$
- This module can be found at github.com/qdcampagna/BTODSTARLNUNP_EVTGEN_Model

Effective Hamiltonian

- Can parameterize NP in terms of right and left handed vectors, right and left handed scalars, and tensors
 - \circ Recombine g_{sl} and g_{sR} to get a scalar (g_s) and pseudoscalar (g_p) contribution
- We assume that the electron mode is well described by the SM, so we only consider NP in the μ mode

$$\mathcal{M} = \frac{4G_F V_{cb}}{\sqrt{2}} \left\{ \langle D\pi \, | \, \bar{c} \gamma^\mu [(1+g_L) P_L + g_R P_R] b \, | \, \bar{B} \rangle (\bar{\mu} \gamma_\mu P_L \nu) + \langle D\pi \, | \, \bar{c} (g_{S_L} P_L + g_{S_R} P_R) b \, | \, \bar{B} \rangle (\bar{\mu} P_L \nu) + g_T \langle D\pi \, | \, \bar{c} \, \sigma^{\mu\nu} b \, | \, \bar{B} \rangle (\bar{\mu} \sigma_{\mu\nu} P_L \nu) \right\}$$

Forward-Backward Asymmetry

- A_{FB} is the asymmetry of events with fermions produced in the forward region ($\cos \theta_{\ell} > 0$) vs those produced in the backward region ($\cos \theta_{\ell} < 0$)
- A_{FR} is heavily dependent on the choice of form factors, but ΔA_{FR} removes much of this dependence
- Note: the B factories have not measured A_{FB} so far, so we use our MC to to simulate NP scenarios that can produce a measurable deviation from the SM prediction

$$\frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{\ell}} = \frac{d\Gamma}{dq^{2}} \left(\frac{1}{2} + A_{FB} \cos\theta_{\ell} + \frac{1 - 3\tilde{F}_{L}^{\ell}}{4} \frac{3\cos^{2}\theta_{\ell} - 1}{2} \right)$$

Asymmetries vs. Δ -Observables

Choosing NP Scenarios

- Used following constraints:
 - $\bigcirc BR = B(B \rightarrow D^* \mu \nu)/B(B \rightarrow D^* e \nu) = 1 \pm 3\%$
 - $\triangle \Delta A_{FB} = 0.0349 \pm 0.0089$ (from Bobeth et al. analysis of Belle 2019 data)

- Settled on 3 NP scenarios
 - \circ NP1: $g_1 = 0.06$, $g_R = 0.075$, $g_P = 0.2i$
 - \circ NP2: $g_1 = 0.08$, $g_p = 0.090$, $g_p = 0.6i$
 - \circ NP3: $g_1 = 0.07$, $g_R = 0.075$, $g_P = 0$

Correlated Asymmetries

- If there is truly NP, there will be signals in asymmetries other than $\Delta A_{_{FR}}$
- Will always see a ΔS_3 and ΔS_5 in the presence of NP
- S_7 is a true CP-violating asymmetry, and so will only appear in certain scenarios (ie imaginary g_D)
- MC shown for 50 ab⁻¹ data set in q² bins of 0.4 GeV²

Belle II Sensitivities

- For current available Belle data (1 ab⁻¹)
 and projected Belle II data (50 ab⁻¹), we
 have simulated what can be expected if
 they decide to measure this anomaly
- We have used Belle fiducial cuts
 - Transverse momenta of the lepton (> 0.8 GeV) and the pion (> 0.1 GeV)
 - \circ Angular acceptance of all final state particles (-0.866 < cosθ < 0.956)
- This plot shows the predicted ΔA_{FB} values in three discrete q^2 bins for the three NP scenarios we have focused on

Conclusions

- There are several indicators of possible NP in the $B \rightarrow D^* \ell \nu$ mode
- ullet Δ -observables significantly reduce theoretical uncertainty due to form factors compared to straight asymmetries
- The presence of NP requires signals in several correlated observables
- A coarse q² bin analysis of these correlated observables can indicate NP with both current and projected data sets

Acknowledgements

- This work was supported by the **NSF Grant No PHY-191514**
- Thanks to Alakabha Datta, Lopamudra Mukherjee, Bhubanjyoti Bhattacharya, Thomas Browder, Alexei
 Sibidanov, and Shawn Dubey

Backup Slides

Integrated Values

- To date, ΔA_{FB} has been measured as an "integrated" quantity (using 1 q² bin that encompasses the entire desired range)
- The following values are measured from Monte Carlo simulation using Belle fiducial cuts on angular acceptance of final state particles, and the transverse momentum of the lepton and pion
 - Note: 1 ab⁻¹ is the current available data from Belle, 50 ab⁻¹ is the projected data with target Belle II luminosity

No.	$\langle \Delta A_{FB} \rangle \; (50 \mathrm{ab}^{-1})$	$\langle \Delta A_{FB} \rangle \; (1 \mathrm{ab}^{-1})$	$\langle \Delta S_5 \rangle \; (50 \mathrm{ab}^{-1})$	$\langle \Delta S_5 \rangle \; (1 \mathrm{ab}^{-1})$
NP 1:	0.019 ± 0.001	0.023 ± 0.005	0.019 ± 0.001	0.019 ± 0.006
NP 2:	0.018 ± 0.001	$0.022 {\pm} 0.007$	0.016 ± 0.001	$0.016 {\pm} 0.006$
NP 3:	0.017 ± 0.001	0.022 ± 0.007	0.019 ± 0.001	0.019 ± 0.006

Kinematic Distributions

Observables

			1	
Observable	Angular Function	NP Dependence	m_{ℓ} suppression order	
A_{FB}	$\cos heta_\ell$	$\mathrm{Re}\left[g_Tg_P^* ight]$	$\mathcal{O}(1)$	
		$\left \text{Re} \left[(1 + g_L - g_R)(1 + g_L + g_R)^* \right] \right $		
		$\operatorname{Re}\left[(1+g_L-g_R)g_P^*\right]$		
		$\operatorname{Re}\left[g_T(1+g_L-g_R)^*\right]$	$\mathcal{O}(m_\ell/\sqrt{q^2})$	
		$\operatorname{Re}\left[g_T(1+g_L+g_R)^*\right]$		
		$ 1 + g_L - g_R ^2$	$\mathcal{O}(m_\ell^2/q^2)$	
		$ g_T ^2$		
S_3	$\sin^2 \theta^* \sin^2 \theta_\ell \cos 2\chi$	$ 1 + g_L + g_R ^2$		
		$ 1 + g_L - g_R ^2$	$\mathcal{O}(1),\;\mathcal{O}(m_\ell^2/q^2)$	
		$ g_T ^2$		
S_5	$\sin 2\theta^* \sin \theta_\ell \cos \chi$	$\mathrm{Re}\left[g_Tg_P^* ight]$	$\mathcal{O}(1)$	
		$ 1+g_L-g_R ^2$	$\mathcal{O}(1),\;\mathcal{O}(m_\ell^2/q^2)$	
		$\mathrm{Re}\left[(1+g_L-g_R)g_P^* ight]$		
		$\operatorname{Re}\left[g_T(1+g_L-g_R)^*\right]$	$\mathcal{O}(m_\ell/\sqrt{q^2})$	
		$\operatorname{Re}\left[g_T(1+g_L+g_R)^*\right]$		
		$ g_T ^2$	$\mathcal{O}(m_\ell^2/q^2)$	
S_7	$\sin 2 heta^* \sin heta_\ell \sin \chi$	$\mathrm{Im}\left[g_{P}g_{T}^{*}\right]$	$\mathcal{O}(1)$	
		$\mathrm{Im}\left[(1+g_L+g_R)g_P^*\right]$	$\mathcal{O}(m_\ell/\sqrt{q^2})$	
		$\mathrm{Im}\left[(1+g_L-g_R)g_T^*\right]$		
		$\left[\text{Im} \left[(1 + g_L - g_R)(1 + g_L + g_R)^* \right] \right]$	$\mathcal{O}(m_\ell^2/q^2)$	

Asymmetry Definitions

$$A_{FB}(q^{2}) = \left(\frac{d\Gamma}{dq^{2}}\right)^{-1} \begin{bmatrix} \int_{0}^{1} - \int_{-1}^{0} d\cos\theta_{\ell} \frac{d^{2}\Gamma}{d\cos\theta_{\ell}dq^{2}}, \\ S_{3}(q^{2}) = \left(\frac{d\Gamma}{dq^{2}}\right)^{-1} \begin{bmatrix} \int_{0}^{\pi/4} \int_{-\pi/4}^{\pi/2} \int_{-\pi/4}^{3\pi/4} \int_{-\pi/4}^{\pi} \int_{-5\pi/4}^{5\pi/4} \int_{-5\pi/4}^{3\pi/2} \int_{-5\pi/4}^{7\pi/4} \int_{-\pi/4}^{2\pi} d\chi \frac{d^{2}\Gamma}{dq^{2}d\chi}, \\ S_{5}(q^{2}) = \left(\frac{d\Gamma}{dq^{2}}\right)^{-1} \begin{bmatrix} \int_{0}^{\pi/2} \int_{-\pi/2}^{\pi} \int_{-\pi/2}^{3\pi/2} \int_{-\pi/2}^{2\pi} d\chi \int_{-\pi/2}^{\pi} \int_{-\pi/2}^{3\pi/2} \int_{-\pi/2}^{2\pi} d\chi \int_{-\pi/2}^{\pi} \int_{-\pi/2}^{3\pi/2} \int_{-\pi/2}^{\pi} d\chi \int_{-\pi/2}^{\pi} \int_{-\pi$$

