20th Conference on Flavour Physics and CP violation Oxford, Mississippi, 23-27 May 2022

Mixing and CP violation in Charm decays at LHCb

Roberto Ribatti

(Scuola Normale Superiore & INFN-Pisa) roberto.ribatti@cern.ch

on behalf of the LHCb collaboration

Mixing and CPV in charm

$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D^0}\rangle \quad \phi = \arg\left(\frac{q}{p}\right)$$
 $x = \frac{M_2 - M_1}{\Gamma} \quad y = \frac{\Gamma_2 - \Gamma_2}{2\Gamma}$

- Charmed mesons are the only ones with up-type quarks where
 CPV can be measured
- In SM, mixing and CPV in charm are suppressed, $O(<10^{-3})$
- Simultaneous fit to beauty+charm observables, [JHEP12(2021)141] leads to 3.5% relative precision on y, dominated by LHCb
- First observation of $x \neq 0$ in 2021 [PRL127(2021)111801]
- First observation of CPV in the decay in charm in 2019
- Still no evidence of CPV in mixing and interference

Outline

• Measurement of the charm mixing parameter y_{CP}^{-} $y_{CP}^{K\pi}$ using two-body D^0 meson decays [arXiv:2202.09106]

• Measurement of CP asymmetries in $D_{(s)}^+ \to \eta \pi^+$ and $D_{(s)}^+ \to \eta' \pi^+$ decays [arXiv:2204.12228]

Measurement of charm mixing parameter

 y_{CP} with $D^0 \rightarrow h^+h^-$ decays at LHCb

$y_{CP}^- y_{CP}^{K\pi}$ in $D^0 \rightarrow h^+h^-$: experimental observable

The experimental observable is: $(f = K^+K^- \text{ and } \pi^+\pi^-)$

$$\frac{\Gamma(D^{0} \to f, t)}{\Gamma(D^{0} \to K^{-}\pi^{+}, t)} - 1 = y_{CP}^{f} - y_{CP}^{K\pi} \approx y \left(1 + \sqrt{R_{D}}\right) \sqrt{\frac{B(D^{0} \to K^{+}\pi^{-})}{B(D^{0} \to K^{-}\pi^{+})}} \approx 6\%$$
mixing
$$\frac{D^{0}}{D^{0} \to K^{+}K^{-}, \pi^{+}\pi^{-}}$$
Cabibbo

$$R^{f} = \frac{N(D^{0} \rightarrow f, t)}{N(D^{0} \rightarrow K^{-}\pi^{+}, t)} \propto \exp\left[-\left(\frac{y_{CP}^{f} - y_{CP}^{K\pi}}{v_{CP}^{K\pi}}\right) t / \tau_{D^{0}}\right] \times \frac{\varepsilon(f, t)}{\varepsilon(K^{-}\pi^{+}, t)} \qquad \text{mixing}$$

where ε are the time-dependent efficiencies

Biggest challenge: equalize efficiencies so they cancel in the ratio

$y_{CP}^- y_{CP}^{K\pi}$ in $D^0 \rightarrow h^+h^-$: dataset

- Run 2 dataset: 6 fb⁻¹ of pp collision @ \sqrt{s} = 13 TeV
- D^0 from $D^{*+} \rightarrow D^0 \pi^+$ produced at the pp interaction point.

 $D^{*+/-} \xrightarrow{D^0} h^{-}$

- ullet Pion charge determines the D^0 flavour
- Fit to $\Delta m = m(h^-h^+\pi_{\rm tag}) m(h^-h^+)$ to subtract the combinatorial background

y_{CP}^{-} $y_{CP}^{K\pi}$ in $D^0 \rightarrow h^+h^-$: efficiency equalization

- Trigger requirement on D^0 daughters tracks (p, p_T, η , IP) are applied to two different final states
 - → time-dependent efficiency discrepancies appear

y_{CP}^{-} $y_{CP}^{K\pi}$ in $D^0 \rightarrow h^+h^-$: efficiency equalization

- Trigger requirement on D⁰ daughters tracks (p, p_T, η, IP) are applied to two different final states
 → time-dependent efficiency discrepancies appear
- New "matched" variables are computed imposing |p| of D^0 daughters in the D^0 center of mass to be equal between the final states and then tighter selection on new variables is applied

y_{CP}^{-} $y_{CP}^{K\pi}$ in $D^0 \rightarrow h^+h^-$: efficiency equalization

- Trigger requirement on D⁰ daughters tracks (p, p_T, η, IP) are applied to two different final states
 → time-dependent efficiency discrepancies appear
- New "matched" variables are computed imposing |p| of D^0 daughters in the D^0 center of mass to be equal between the final states and then tighter selection on new variables is applied
- This efficiency equalization procedure is then validated both on full simulation and data

$y_{CP}^- y_{CP}^{K\pi}$ in $D^0 \rightarrow h^+h^-$: secondary decays

- D^0 decay time measured from pp interaction vertex
- Sample is contaminated by secondary $B^{0/+} \rightarrow D^{*+} X$ decays \rightarrow reconstructed decay-times are biased towards larger values, diluting mixing effect
- Selection on $IP(D^0)$ reduce this background to few %
- Residual fraction is fitted to the 2D $[IP(D^0) t(D^0)]$ distribution and the bias is subtracted with MC simulation

$y_{CP}^- y_{CP}^{K\pi}$ in $D^0 \rightarrow h^+h^-$: results

• The measured values in each decay channel:

$$y_{CP}^{KK} - y_{CP}^{K\pi} = (7.08 \pm 0.30_{\text{stat}} \pm 0.14_{\text{sys}}) \times 10^{-3}$$

$$y_{CP}^{\pi\pi} - y_{CP}^{K\pi} = (6.57 \pm 0.53_{\text{stat}} \pm 0.16_{\text{sys}}) \times 10^{-3}$$

Final average:

$$y_{CP}^{}$$
 - $y_{CP}^{K\pi}$ = (6.96 ± 0.26_{stat} ± 0.13_{sys}) x 10⁻³

World average improved by a factor 4!

Measurement of CP asymmetries in

$$D_{(s)}^+ \rightarrow \eta^{(')} \pi^+$$
 decays at LHCb

$A_{CD}(D_{(s)}^+ \to \eta^{(')}\pi^+)$: the experimental observable

The CP asymmetry is defined as: (with $f = \eta^{(')}(\rightarrow \gamma \pi^+\pi^-) \pi^+$) $A^{CP}(D_{(s)}^+ \to f^+) \equiv \frac{I(D_{(s)}^+ \to f^+) - I(D_{(s)}^- \to f^-)}{I(D_{(s)}^+ \to f^+) + I(D_{(s)}^- \to f^-)}$

Experimentally the raw asymmetry is measured as:

$$A^{\operatorname{raw}}(D_{(s)}^{+} \longrightarrow f^{+}) \equiv \frac{N(D_{(s)}^{+} \longrightarrow f^{+}) - N(D_{(s)}^{-} \longrightarrow f^{-})}{N(D_{(s)}^{+} \longrightarrow f^{+}) + N(D_{(s)}^{-} \longrightarrow f^{-})}$$

For small asymmetry:

r small asymmetry:
$$A^{\operatorname{prod}}(D_{(s)}^{+}) \equiv \frac{\sigma(D_{(s)}^{+}) - \sigma(D_{(s)}^{-})}{\sigma(D_{(s)}^{+}) + \sigma(D_{(s)}^{-})}$$

$$A^{\operatorname{raw}}(D_{(s)}^{+} \longrightarrow f^{+}) \approx A^{\operatorname{CP}}(D_{(s)}^{+} \longrightarrow f^{+}) + A^{\operatorname{prod}}(D_{(s)}^{+}) + A^{\operatorname{det}}(f^{+})$$

$$A^{\operatorname{det}}(f^{+}) \equiv \frac{\varepsilon(f^{+}) - \varepsilon(f^{-})}{\varepsilon(f^{+}) + \varepsilon(f^{-})}$$

Production and detection asymmetries are subtracted using control channels:

$$A^{\text{raw}}(D^{+} \to \eta^{(')}\pi^{+}) - A^{\text{raw}}(D^{+} \to \phi\pi^{+}) = A^{CP}(D^{+} \to \eta^{(')}\pi^{+}) - A^{CP}(D^{+} \to \phi\pi^{+})$$
 external input (0.005 ± 0.051)%
$$A^{\text{raw}}(D_{s}^{+} \to \eta^{(')}\pi^{+}) - A^{\text{raw}}(D_{s}^{+} \to \phi\pi^{+}) = A^{CP}(D_{s}^{+} \to \eta^{(')}\pi^{+})$$
 [PRL122(2019)191803]

$A_{CP}(D_{(s)}^+ \rightarrow \eta^{(`)}\pi^+)$: analysis workflow

- Run 2 dataset: 6 fb⁻¹ of pp collision @ \sqrt{s} = 13 TeV
- ullet CP asymmetry from simultaneous, binned ML fit to $m(oldsymbol{\eta}^{(\,\prime)}\pi^{\pm})$ and $m(oldsymbol{\gamma}\,\pi^{+}\pi^{-})$

$$A_{CP}(D_{(s)}^+ \rightarrow \eta^{(')}\pi^+)$$
: results

The measured values in each decay channel:

$$\begin{array}{ll} \circ & A^{CP}(D^+ \!\!\to\!\! \eta \, \pi^+) = (\,0.34 \pm 0.66_{\,\text{stat}} \pm 0.16_{\,\text{sys}} \pm 0.05_{\,\text{ctrl}})\,\%\,\,^* \\ \circ & A^{CP}(D_s^+ \!\!\to\!\! \eta \, \pi^+) = (\,0.32 \pm 0.51_{\,\text{stat}} \pm 0.12_{\,\text{sys}}\,)\,\% \\ \circ & A^{CP}(D^+ \!\!\to\!\! \eta^{'}\pi^+) = (\,0.49 \pm 0.18_{\,\text{stat}} \pm 0.06_{\,\text{sys}} \pm 0.05_{\,\text{ctrl}})\,\%\,\,^* \\ \circ & A^{CP}(D_s^+ \!\!\to\!\! \eta^{'}\pi^+) = (\,0.01 \pm 0.12_{\,\text{stat}} \pm 0.08_{\,\text{sys}}\,)\,\%\,\,^* \\ \end{array}$$

- * Most precise measurement up to date!
- Statistically limited, no CP violation effect observed

Future prospect and conclusions

- Exciting results with Run 2 data and new one are on the way, however we have just barely started to approach SM upper limits for CPV
- LHCb Upgrade I is starting now. Expect to collect 23 fb⁻¹ of integrated luminosity by the end of Run 3 and 50 fb⁻¹ by the end of Run 4 [CERN-PUB-LHCC-2018-027]
- The new LHCb DAQ&trigger system will grant a further gain w.r.t. Run 2 (about a factor of 2 in efficiency / fb^{-1}) for charm hadronic modes

Backup

$y_{CP}^{-} y_{CP}^{K\pi}$ in $D^0 \rightarrow h^+h^-$: impact on charm average

$A_{CP}(D_{(s)}^+ \rightarrow \eta^{(')}\pi^+)$: dataset

$A_{CP}(D_{(s)}^+ \rightarrow \eta^{(`)}\pi^+)$: control sample

