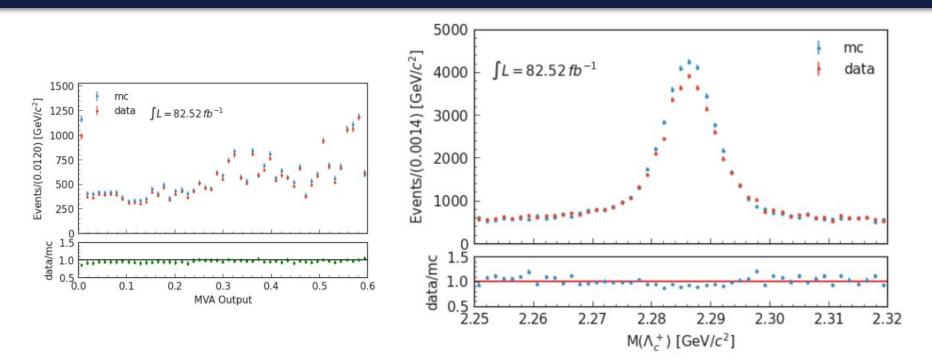

Update

Anil Panta

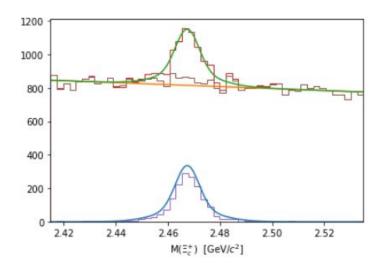

UM-BNL July 27, 2021

Look at Data/MC in $\Lambda_c^+ o \Sigma^+ \pi^+ \pi^-$

Look at Data/MC in $\Lambda_c^+ o \Sigma^+ \pi^+ \pi^-$

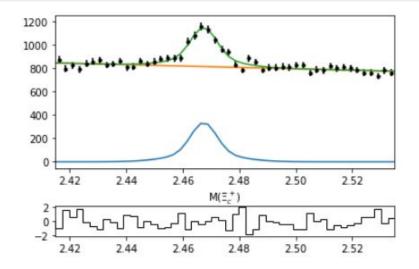
MVA > 0.36 (NOT Optimized)

Possible systematics:


- 1. Integrated Luminosity : Relative BF -> cancels out.
- **2.** Cross Section of $e^+e^- \rightarrow c\bar{c}$: Relative BF -> cancels out.
- 3. Tracking efficiency : $\pi^+\pi^-p$ Relative BF -> cancels out.
- **4.** π^0 **Detection efficiency** : From neutral performance group.
- 5. Signal Efficiency due to MC statistics :
- 6. Signal Shape PDF:
 - Vary parameters within uncertainty obtained from fit
 - Get maximum deviation in the signal yield
- 7. BDT training:
 - How ? Looking at some paper.

Look at CP asymmetry:

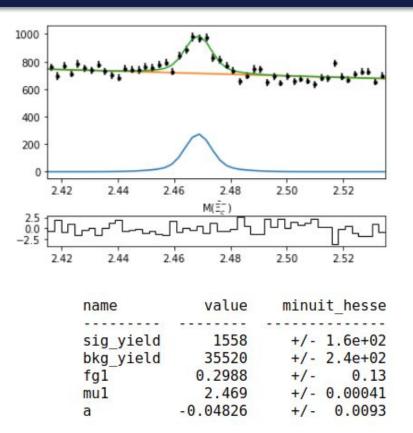
- MC14_ria 200 /fb
- Applied FastBDT training that was used before.


	# total	#sig	# bkg
Ξ_c^+	42655	1691	40964
$ar{\Xi}_c^-$	37075	1516	35559

Particle:

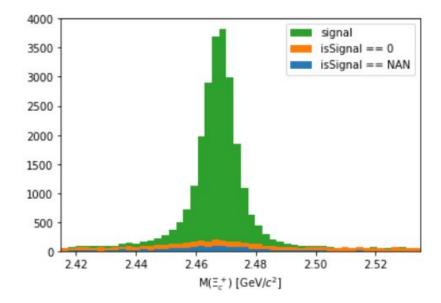

MC truth matched: # sig 1691

• Over-estimation.



name	value	<pre>minuit_hesse</pre>
sig yield	2089	+/- 1.7e+02
bkg yield	40570	+/- 2.6e+02
fg1	0.4157	+/- 0.1
mul	2.467	+/- 0.00038
a	-0.04351	+/- 0.0088

anti-Particle:



MC truth matched: # sig 1516

Failed MC truth Match:

- Small Peak in signal range.
- Coming from Failed MC match.
- Still got no idea on how to deal with this.

Signal MC (254000 events)

CP Asymmetry:

- CP Asymmetry:
 - Calculate Raw asymmetry.
 - Take into account inbuilt asymmetry.

$$A_{CP}(f) = \frac{\Gamma(f) - \Gamma(\bar{f})}{\Gamma(f) + \Gamma(\bar{f})} \qquad \longrightarrow \qquad A_{Raw} = \frac{N(f) - N(\bar{f})}{N(f) + N(\bar{f})}$$

- Proton/antiproton interaction asymmetry with the detector material.
 - Is this studied before?
 - Which channel to take for this study?

$$A_{\text{Reco.}}(p) = \frac{\epsilon_{\text{Reco.}}(p) - \epsilon_{\text{Reco.}}(\overline{p})}{\epsilon_{\text{Reco.}}(p) + \epsilon_{\text{Reco.}}(\overline{p})}$$

Proton / antiproton asymmetry:

- Proton/antiproton interaction asymmetry with the detector material.
 - Is this studied before?
 - Which channel to take for this study?

$$A_{\text{Reco.}}(p) = \frac{\epsilon_{\text{Reco.}}(p) - \epsilon_{\text{Reco.}}(\overline{p})}{\epsilon_{\text{Reco.}}(p) + \epsilon_{\text{Reco.}}(\overline{p})}$$

- Production asymmetry: asymmetry in production of Xi_c^+ and anti-Xi_c^+
- Detection asymmetry: asymmetry in $\,\pi^{\pm}$
- Any other ??

OR measure ΔA_{CP}

• CP asymmetry difference between decay dictated by U-spin sum rule.

Reference: arxiv:1811.11188

$$\begin{aligned} A_{CP}(\Lambda_{c}^{+} \to pK^{-}K^{+}) + A_{CP}(\Xi_{c}^{+} \to \Sigma^{+}\pi^{-}\pi^{+}) &= 0, \\ A_{CP}(\Lambda_{c}^{+} \to \Sigma^{+}\pi^{-}K^{+}) + A_{CP}(\Xi_{c}^{+} \to pK^{-}\pi^{+}) &= 0, \\ A_{CP}(\Lambda_{c}^{+} \to p\pi^{-}\pi^{+}) + A_{CP}(\Xi_{c}^{+} \to \Sigma^{+}K^{-}K^{+}) &= 0. \end{aligned}$$

• Theorist may be interested in just A_{CP} rather than Delta A_{CP}.