Sigma anti-sigma

Anil Panta

A_{CP}

•
$$A_{CP}^{raw} = \frac{N(\Xi_c) - N(\Xi_c)}{N(\Xi_c) + N(\Xi_c)}$$

$$\bullet \ A_{CP} = A_{CP}^{raw} - A_{P}^{\Xi_c} - A_{D}$$

$$A_P^{\Xi_c} = \Xi_c$$
 production asymmetry A_D = Detection asymmetry (Σ)

•
$$A_D^{\Sigma} = \frac{\epsilon^{\Sigma} - \epsilon^{\bar{\Sigma}}}{\epsilon^{\Sigma} + \epsilon^{\bar{\Sigma}}}$$

•
$$\epsilon = \frac{\# \text{Reconstructed}}{\# \text{Generated}}$$

- Can't get generated info from Data.
- $A_D^{\Sigma} = \frac{N(\Sigma) N(\bar{\Sigma})}{N(\Sigma) + N(\bar{\Sigma})}$

variables of interest (Normalized) (optimized)

flightDistance > 0.31 cm $\mathrm{CM}(\mathrm{p})~(\Sigma) > 0.91~\mathrm{GeV/c}$ $\mathrm{CM}(\mathrm{p})~(\pi^0) > 0.31~\mathrm{GeV/c}$

protonID > 0.9 clsuterE9E21 > 0.9

After optimization: 100 /fb MC14ri_a

Σ^+ Square cuts vs Ξ_c^+ MVA

Only Signal

Xi: After MVA cut

FastBDT

- Train on variables that was used in main analysis ()
 - clusterE9E21
 - \circ CM(π^0)
 - o flightDistance (Σ^+)
- Train dataset : 100 /fb MC14
- Test dataset: 100 /fb MC14

MVA output

- Not Big separation.
- Low signal to train on.
- Next Step:
 - Add signal MC to train sample.

After MVA : > 0.07

$$\#$$
sig = 293849

#sig = 262025

Σ^+ MVA vs Ξ_c^+ MVA

Only signal

Next step:

- Add signal MC to training in MVA.
- -> Improve MVA.
- Look at variables distribution between Ξ_c^+ and Σ^+

Sketch:

- Interaction to Beam pipe is present in Xi.
- Just taking the asymmetry from Sigma should be fine to subtract from asymmetry in Xi decay.

Beam pipe radius: 0.5 cm